CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

CBCS, LOCF and NEP-2020 Based Curriculum and Syllabi of <u>M.Sc. Mathematics</u>

(w.e.f. 2021-2022)

DEPARTMENT OF MATHEMATICS SCHOOL OF BASIC SCIENCES

Approved by :	BOS	School Board	Academic Council
Approval Status :			
Approval Date :	04.09.2021	20.09.2021	12.10.2021

1 | Page

TABLE OF CONTENTS

SR. NO.	CONTENTS	PAGE NO.
	VISION AND MISSION	03
1	BACKGROUND i) NEP-2020 AND LOCF AN INTEGRATED APPROACH	04
	ii) ABOUT THE MATHEMATICS	06
	iii) ABOUT THE PROGRAMME (NATURE, EXTENT AND AIMS)	06
	iv) QUALIFICATION DESCRIPTORS (POSSIBLE CAREER PATHWAYS)	07
2	PROGRAMME OUTCOMES (POs)	09
3	PROGRAMME SPECIFIC OUTCOMES (PSOs)	11
4	POSTGRADUATE ATTRIBUTES	13
5	STRUCTURE OF MASTER'S COURSE	14
6	LEARNING OUTCOME INDEX	19
	(Mapping of Courses with PSOs)	
7	SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION	21
8	COURSE-LEVEL LEARNING OUTCOMES	27
9	TEACHING-LEARNING PROCESS	164
10	IMPLEMENTATION OF BLENDED LEARNING	164
11	ASSESSMENT AND EVALUATION	166
12	KEYWORDS	178
13	REFERENCES	179
14	APPENDICES	179

VISION AND MISSION

Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavours, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

Vision and Mission of the Department

Vision

To be an internationally recognized centre for research and teaching in mathematics. To encourage excellence, innovation, integrity and values for society in the department. To produce global leaders for academic and industry by imparting multidisciplinary and contemporary mathematical knowledge to the students.

Mission

- To contribute towards building calibre of the students by providing quality education and research in Mathematics through updated curriculum, effective teaching learning process.
- To impart innovative skills, team-work, ethical practices to the students so as to meet societal expectations.
- To build a strong base in Mathematics for various academic programs across the institute.

1. BACKGROUND

i) NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, socially conscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable **4** | P a g e

creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical , vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with 40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by each department was discussed in series of discussion sessions conducted at Department, School and the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii) About the Mathematics

Mathematics is a powerful tool for global understanding and communication that organizes our lives and prevents chaos. Mathematics helps us understand the world and provides an effective way of building mental discipline. Mathematics encourages logical reasoning, critical thinking, creative thinking, abstract or spatial thinking, problem-solving ability, and even effective communication skills. Mathematics is necessary to understand the other branches of knowledge. All depend on mathematics in one way or another. There is no science, art, or specialty except mathematics was the key to it. The discipline and mastery of any other science or art are very much related to the size of mathematics.

iii) About the Programme (Nature, extent and aims)

A master's degree is a postgraduate degree for students who want to become more skilled or specialized in a particular discipline. While bachelor's and other undergraduate degrees typically give a relatively broad overview of a particular area of study, master's degrees tend to be more focused and allow students to develop the depth of their knowledge in a particular subject, putting them on the right course to become leaders in their fields.

The M.Sc. Mathematics programme, aims to build strong foundations in core areas of higher mathematics in both the pure and applied areas. It is meant for students who would typically take up careers involving mathematical research or mathematical skills – in academia or in industry. The training imparted to the students helps them master the art of problem solving, developing logical reasoning and computational capabilities which are essential traits in all walks of life. Additionally, the knowledge of mathematical modeling and computational training which the students acquire during the programme makes them highly sought after. In keeping with the demands of industry and academia, the syllabus is updated regularly, with inputs taken from various stakeholders including students, alumni and parents at different stages of the preparation of the syllabus.

Duration: M.Sc. Mathematics is a full-time postgraduate level program offered by the Department of Mathematics. This is a 2-years program, consisting of four semesters with two semesters per year.

Eligibility: For M.Sc. in Mathematics, the candidates with the following qualification are eligible:

B. A./B.Sc. (Hons.) in Mathematics from any recognized Indian or foreign university with 50% or above marks

OR

B.Sc./B. A. with Mathematics as one of the subject of study with 55% or above marks or equivalent grade in the aggregate

iv) Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive a master degree in the Mathematics. M.Sc. Mathematics post-graduates of this department are expected to demonstrate knowledge of major portion of pure and applied mathematics and the ability to provide an overview of scholarly debates relating to Mathematics. Also it is expected that after the completion of this course they will be in a position to pursue their research in Mathematics. Along with mathematical skills, it is also expected that they will learn life skills of argumentation, communication and general social values which are necessary to live rich, productive and meaningful lives. The list below provides a synoptic overview of possible career paths provided by a postgraduate training in Mathematics:

- 1. Teaching
- 2. Research
- 3. Engineering
- 4. Computer programming (In different MNC's)
- 5. Statistician

- 6. Defense Research and Development Organization (DRDO) and Indian Space Research Organization (ISRO).
- 7. Can go for UPSC/Civil services exam.
- 8. Finance
- 9. Science and business

2. PROGRAMME OUTCOMES (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the
	innovation	scientific problems and innovatively to design and create
		products and solutions to real life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply
	global competency	knowledge to find the solution of burning research
		problems in the concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary
		skills and advanced techniques and apply them for
		betterment of mankind.
PO-8	Leadership and	Ability to learn and work in a groups and capable of
	Teamwork abilities	leading a team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
	awareness	

PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to
	Social awareness	relate with social problems.
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important
	skills and	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish independent startup/innovation center
		etc.

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The post graduates shall be able to realise the following specific outcomes by the end of program studies:

On successful completion of the M.Sc. Mathematics programme a student

Number	Programme Specific Outcomes
PSO-1	Will have a strong foundation in both pure and applied mathematics.
PSO-2	Will be able to apply mathematical skills for solving problems and for preparing various competitive exams.
PSO-3	Will be able to communicate mathematical knowledge effectively, in writing as well as orally.
PSO-4	Will identify applications of mathematics in other disciplines, leading to enhancement of career prospects in different fields and research areas.
PSO-5	Will have basic knowledge of programming and computational techniques as required for employment.
PSO-6	Should have the knowledge of the fundamental axioms in mathematics and capability of developing ideas based on them and inculcate mathematical reasoning.
PSO-7	Will be able to locate and analyse the different mathematical texts with appropriate theoretical framework.
PSO-8	Have the knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in science, social science, engineering and technology.
PSO-9	Should be able to develop analytical skills, critical thinking, creativity, communication and presentation skills through assignments, seminar, project

	work.
PSO-10	Should be able to apply their skills and knowledge that translate information
150-10	
	presented verbally into mathematical form, select and use appropriate
	mathematical formulae or techniques in order to process the information and
	draw the relevant conclusion.

4. POSTGRADUATE ATTRIBUTES

No.	P.G. Attributes
PGA-1	Disciplinary Knowledge
PGA-2	Creative and Critical Thinking
PGA-3	Reflective Thinking
PGA-4	Problem Solving
PGA-5	Analytical Reasoning
PGA-6	Communication Skills
PGA-7	Research Skills
PGA-8	Life Skills
PGA-9	Life-long Learning
PGA-10	Global Competency

5. STRUCTURE OF MASTER'S COURSE

Types of Courses	Nature	Total	%
		Credits	
Core Courses (CC)	Compulsory	65	67.01%
Elective Courses (EC)	Discipline Centric Elective Courses	24	24.74%
	Generic Elective Courses	08	8.25%
Skilled-based Courses/ Self-study based Courses	Skill Enhancement Elective Courses	00	

Note: The Scheme and Syllabus of the course are subject to change according to the UGC guidelines, NEP-2020 and University ordinance.

Course Type

Core Courses (CC) Generic Elective Courses (GEC) Discipline Centric Elective Courses (DCEC) Skill Enhancement Elective Courses (SEEC)

Total Credit: 97, Semester-wise distribution of credits: 25+24+24+24

CORE COURSES (CC)

S.No.	Course Code	Course Title	L	Τ	P	Credit
1.	SBSMAT 01 01 01 C 3104	Real Analysis	3	1	0	4
2.	SBSMAT 01 01 02 C 3104	Algebra-I	3	1	0	4
3.	SBSMAT 01 01 03 C 3104	Complex Analysis	3	1	0	4
4.	SBSMAT 01 01 04 C 3104	Differential Equations	3	1	0	4
5.	SBSMAT 01 01 05 C 3104	Programming in C	3	1	0	4
6.	SBSMAT 01 01 06 C 0021	Lab Programming in C	0	0	2	1
7.	SBSMAT 01 02 01 C 3104	Linear Algebra	3	1	0	4
8.	SBSMAT 01 02 02 C 3104	Topology	3	1	0	4
9.	SBSMAT 01 02 03 C 3104	Numerical Analysis	3	1	0	4
10.	SBSMAT 01 02 04 C 0021	Lab for Numerical Analysis	0	0	2	1
11.	SBSMAT 01 02 05 C 2023	Typesetting in Latex	2	0	2	3
12.	SBSMAT 01 03 01 C 3104	Integral Equations and	3	1	0	4
		Calculus of Variation				
13.	SBSMAT 01 03 02 C 3104	Functional Analysis	3	1	0	4
14.	SBSMAT 01 03 03 C 3104	Mathematical Statistics	3	1	0	4
15.	SBSMAT 01 03 04 C 0084	Seminar	0	0	8	4

16.	SBSMAT 01 04 01 C	Project/Dissertation	0	0	0	12

DISCIPLINE CENTRIC ELECTIVE COURSES (DCEC)

(Offered to the students of M.Sc. Mathematics by the Department)

S.No.	Course Code	Course Title	L	T	P	Credit
1.	SBSMAT 01 02 01 DCEC 3104	Wavelet Analysis	3	1	0	4
2.	SBSMAT 01 02 02 DCEC 2124	Object Oriented Programming with C++	2	1	2	4
3.	SBSMAT 01 02 03 DCEC 3104	Information Theory	3	1	0	4
4.	SBSMAT 01 02 04 DCEC 3104	Operations Research	3	1	0	4
5.	SBSMAT 01 03 01 DCEC 3104	Applied Discrete Mathematics	3	1	0	4
6.	SBSMAT 01 03 02 DCEC 3104	Theory of Elasticity	3	1	0	4
7.	SBSMAT 01 03 03 DCEC 3104	Algebra – II	3	1	0	4
8.	SBSMAT 01 03 04 DCEC 3104	Fluid Dynamics	3	1	0	4
9.	SBSMAT 01 03 05 DCEC 3104	Fuzzy Set Theory	3	1	0	4
10.	SBSMAT 01 04 01 DCEC 3104	Differential Geometry	3	1	0	4
11.	SBSMAT 01 04 02 DCEC 3104	Mathematical Modelling	3	1	0	4
12.	SBSMAT 01 04 03 DCEC 3104	Advanced Numerical Analysis	3	1	0	4
13.	SBSMAT 01 04 04 DCEC 3104	Finite Element Methods	3	1	0	4
14.	SBSMAT 01 04 05 DCEC 3104	Advanced Complex Analysis	3	1	0	4
15.	SBSMAT 01 04 06 DCEC 3104	Introduction to Cryptography	3	1	0	4

16.	SBSMAT 01 04 07 DCEC 3104	Advanced Abstract Algebra	3	1	0	4
17.	SBSMAT 01 04 08 DCEC 3104	Measure Theory and Integration	3	1	0	4
18.	SBSMAT 01 04 09 DCEC 3104	Mechanics	3	1	0	4
19.	SBSMAT 01 04 10 DCEC 3104	Number Theory	3	1	0	4
20.	SBSMAT 01 04 11 DCEC 3104	Mathematics for Finance and Insurance	3	1	0	4

GENERIC ELECTIVE COURSES (GEC)

(Offered to PG students of other departments only)

S. No.	Course code	Course title	L	Τ	Р	Credit
1.	SBSMAT 01 01 01 GEC 3104	Introduction to Mathematical Analysis	3	1	0	4
2.	SBSMAT 01 01 02 GEC 3104	Mathematics for Chemists	3	1	0	4
3.	SBSMAT 01 01 03 GEC 3104	Basic Mathematics for Social Science	3	1	0	4
4.	SBSMAT 01 02 01 GEC 2124	Typesetting in Latex	2	1	2	4
5.	SBSMAT 01 02 02 GEC 2124	Numerical Methods	2	1	2	4
6.	SBSMAT 01 02 03 GEC 3104	Discrete Mathematics	3	1	0	4

Note: Any MOOCs course for PG students on SWAYAM can also be taken as DCEC or GEC course on the recommendations of the department.

Skill Enhancement Elective Courses (SEEC)

(Skill Enhancement Elective Course, non-credit, only qualifying in nature): This may include a course based on Theoretical/Experimental/Computational Techniques/Methods. The department may offer more than one courses depending on specialization and strength of faculty members, and the student has to opt one of them.

S. No	Course Code	Course Title	L	Τ	Р	Credit
1.	SBSMAT 01 04 01 SEEC 0120	Programming in MATLAB	0	1	2	0
2.	SBSMAT 01 04 02 SEEC 0120	Automata Theory	0	1	2	0
3.	SBSMAT 01 04 03 SEEC 0120	Artificial Intelligence and Machine Learning	0	1	2	0

6. LEARNING OUTCOME INDEX

6.1A Mapping of Courses with PSOs (first year)

	PSOs ⇒	PSO1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10
Semester	Course										
	No. ↓										
	1					X				1	
		N N	v √		v √	X V	v √	N √	v √	N N N N N N N N N N N N N N N N N N N	
	2										\checkmark
Ŧ	3					\checkmark				\checkmark	
Ι	4					\checkmark	Х			\checkmark	
	5							Х		\checkmark	
	6	\checkmark				\checkmark				\checkmark	\checkmark
	7		\checkmark	\checkmark	\checkmark	X			\checkmark	\checkmark	
	8					X				\checkmark	
	9										
	10										
	11										
	12										
II	13										
	14					\checkmark			X	X	
	15								X	X	
	16										
	17										
	18									X	
	19										
	20		\ √		\ √	v √	v √			v √	N N
	21		\checkmark	\checkmark							

Semester	PSOs ⇒	PSO1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	PSO 9	PSO 10
Semester	Course										
	No. I										
	22		\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark		\checkmark	\checkmark
	23		\checkmark				\checkmark	\checkmark	X	\checkmark	\checkmark
	24	\checkmark		\checkmark	\checkmark						
III	25	\checkmark									
	26	\checkmark		\checkmark	\checkmark						
	27	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark		\checkmark	\checkmark
	28	\checkmark									
	29	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
	30	\checkmark									
	31	\checkmark									
	32		\checkmark			X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	33		\checkmark				\checkmark	\checkmark		\checkmark	\checkmark
IV	34	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	35	\checkmark		\checkmark	X						
	36	\checkmark		\checkmark	\checkmark						
	37	\checkmark		\checkmark	\checkmark						
	38	\checkmark		\checkmark	\checkmark						
	39		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	40		\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark		\checkmark	\checkmark
	41		\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark
	42	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
	43	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
	44		\checkmark				\checkmark				
	45							\checkmark			

6.1B Mapping of Courses with PSOs (second year)

20 | Page

7. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION

SEMESTER-I

Total Credits: 25 (C: 21, GEC: 4)

Sr. No.	Course No	Course Code	Course Title	L	Т	Р	Hrs/ Week	Total Credits
	e Courses						WEEK	Creuits
1	1	SBSMAT 01 01 01 C 3104	Real Analysis	3	1	0	4	4
2	2	SBSMAT 01 01 02 C 3104	Algebra-I	3	1	0	4	4
3	3	SBSMAT 01 01 03 C 3104	Complex Analysis	3	1	0	4	4
4	4	SBSMAT 01 01 04 C 3104	Differential Equations	3	1	0	4	4
5	5	SBSMAT 01 01 05 C 3104	Programming in C	3	1	0	4	4
6	6	SBSMAT 01 01 06 C 0021	Lab Programming in C	0	0	2	2	1
Gene	eric Electiv	e Courses (any two of 2 credits of	each or any one of 4 credit	s from	the list	***)	ł	L
7		MOOC/GEC (to be taken from o	other departments)	-	-	-	-	4

GEC courses offered to PG students of other departments only

Course No.	Course Code	Course Title	L	Т	Р	Hrs/ Week	Total Credits
7	SBSMAT 01 01 01 GEC 3104	Introduction to Mathematical Analysis	3	1	0	4	4
8	SBSMAT 01 01 02 GEC 3104	Mathematics for Chemists	3	1	0	4	4
9	SBSMAT 01 01 03 GEC 3104	Basic Mathematics for Social Science	3	1	0	4	4

Note: GEC courses will be offered only to those students who have studied mathematics only till 10^{th} standard.

SEMESTER-II

Total Credits: 24 (C: 16, DCEC: 4, GEC: 4)

Sr.	Course No	Course Code	Course Title	L	Τ	Р	Hrs/	Total
No.							Week	Credits
Core	e Courses							I
1	10	SBSMAT 01 02 01 C 3104	Linear Algebra	3	1	0	4	4
2	11	SBSMAT 01 02 02 C 3104	Topology	3	1	0	4	4
3	12	SBSMAT 01 02 03 C 3104	Numerical Analysis	3	1	0	4	4
4	13	SBSMAT 01 02 04 C 0021	Lab for Numerical Analysis	0	0	2	2	1
5	14	SBSMAT 01 02 05 C 2023	Typesetting in Latex	2	0	2	2	3
	Di	scipline Centric Elective Cou	irses					I
6		MOOC/DCEC		-	-	-	-	4
	Gener	ric Elective Courses		<u> </u>	I	<u> </u>	1	
7		MOOC/GEC (to be t	aken from other departments)	-	-	-	-	4

GEC courses offered to PG students of other departments only

Course	Course Code	Course Title	L	Т	Р	Hrs/	Total
No						Week	Credits
15	SBSMAT 01 02 01 GEC 2124	Typesetting in LaTeX	2	1	2	4	4
16	SBSMAT 01 02 02 GEC 2124	Numerical Methods	2	1	2	4	4
17	SBSMAT 01 02 03 GEC 3104	Discrete Mathematics	3	1	0	4	4

Note: GEC courses will be offered only to those students who have studied mathematics upto 10+2 level.

DCEC courses for M.Sc. (Mathematics) students only

Course	Course Code	Course Title	L	Т	P	Hrs/	Total
No						Week	Credits
18	SBSMAT 01 02 01 DCEC 3104	Wavelet Analysis	3	1	0	4	4
19	SBSMAT 01 02 02 DCEC 2124	Object Oriented	2	1	2	4	4
		Programming C++		1	2	-	
20	SBSMAT 01 02 03 DCEC 3104	Information Theory	3	1	0	4	4
21	SBSMAT 01 02 04 DCEC 3104	Operations Research	3	1	0	4	4

SEMESTER-III

Total Credits: 24 (C:16, DCEC:8)

Sr. No.	Course No.	Course Code	Course Title	L	Т	Р	Hrs/ Week	Total Credits
Core	e Courses							
1	22	SBSMAT 01 03 01 C 3104	Integral Equations and Calculus of Variation	3	1	0	4	4
2	23	SBSMAT 01 03 02 C 3104	Functional Analysis	3	1	0	4	4
3	24	SBSMAT 01 03 03 C 3104	Mathematical Statistics	3	1	0	4	4
4	25	SBSMAT 01 03 04 C 0084	Seminar	0	0	8	8	4
	Dis	scipline Centric Elective Cour	ses					
5	Ν	MOOC/DCEC		-	-	-	-	4
6	N	MOOC/DCEC		-	-	-	-	4

GEC courses may be selected from GEC courses of semester I, if he/she has not studied that paper in Ist semester.

Course No	Course Code	Course Title	L	Τ	Р	Hrs/ Week	Total Credits
26	SBSMAT 01 03 01 DCEC 3104	Applied Discrete Mathematics	3	1	0	4	4
27	SBSMAT 01 03 02 DCEC 3104	Theory of Elasticity	3	1	0	4	4
28	SBSMAT 01 03 03 DCEC 3104	Algebra – II	3	1	0	4	4
29	SBSMAT 01 03 04 DCEC 3104	Fluid Dynamics	3	1	0	4	4
30	SBSMAT 01 03 05 DCEC 3104	Fuzzy Set Theory	3	1	0	4	4

SEMESTER-IV

Total Credits: 24 (C:12, DCEC:8)

Sr. No.	Course No	Course Code	Course Title	L	Τ	Р	Hrs/ Week	Total Credits		
Core	e Courses	-			l	1	1			
1	31	SBSMAT 01 04 01 C	Project/Dissertation	-	-	-	12	12		
	Discipline Centric Elective Courses									
2		MOOC/DCEC		-	_	-	-	4		
3		MOOC/DCEC	_	-	-	_	4			
4		MOOC/DCEC		_	_	_	-	4		
	Discipline Centric Skill Based Courses									
5		SEEC		0	1	2	3	0		

DCEC courses for M.Sc. (Mathematics) students only

Course	Course Code	Course Title	L	Τ	P	Hrs/	Total
No						Week	Credits
32	SBSMAT 01 04 01 DCEC 3104	Differential Geometry	3	1	0	4	4
33	SBSMAT 01 04 02 DCEC 3104	Mathematical Modelling	3	1	0	4	4
34	SBSMAT 01 04 03 DCEC 3104	Advanced Numerical Analysis	3	1	0	4	4
35	SBSMAT 01 04 04 DCEC 3104	Finite Element Methods	3	1	0	4	4
36	SBSMAT 01 04 05 DCEC 3104	Advanced Complex Analysis	3	1	0	4	4
37	SBSMAT 01 04 06 DCEC 3104	Introduction to Cryptography	3	1	0	4	4
38	SBSMAT 01 04 07 DCEC 3104	Advanced Abstract Algebra	3	1	0	4	4
39	SBSMAT 01 04 08 DCEC 3104	Measure Theory and Integration	3	1	0	4	4
40	SBSMAT 01 04 09 DCEC 3104	Mechanics	3	1	0	4	4
41	SBSMAT 01 04 10 DCEC 3104	Number Theory	3	1	0	4	4

42	SBSMAT 01 04 11 DCEC 3104	Mathematics for Finance and	2	1	0	1	4
		Insurance	3	1	0	4	4

OR

Total credits: 24 (C: 24)*

S. No.	Course	Course Code	L	Т	Р	Credits
1	Semester-long Project/Dissertation**	SBSMAT 01 04 02 C	-	-	-	24

*Allowed only on Departmental Committee Recommendations

** The date of final submission of Project/Dissertation report will be intimated to the students during third semester.

SEEC (Skill Enhancement Elective Course, non-credit, only qualifying in nature): This may include a course based on Theoretical/Experimental/Computational Techniques/Methods. The department may offer more than one courses depending on specialization and strength of faculty members, and the student has to opt one of them. The course code may be given as: SBSMAT 01 04 0X SEEC 3100, X=1, 2, 3 ...etc.

Course	Course Code	Course Title	L	Т	Р	Hrs/	Total
No						Week	Credits
43	SBSMAT 01 04 01 SEEC 0120	Programming in MATLAB	0	1	2	3	0
44	SBSMAT 01 04 02 SEEC 0120	Automata Theory	0	1	2	3	0
45	SBSMAT 01 04 03 SEEC 0120	Artificial Intelligence and	0	1	2	3	0
		Machine Learning	Ŭ	-	-	5	0

8. COURSE-LEVEL LEARNING OUTCOMES

Course Structure

SEMESTER – I

Course	Course Name:	Real Analysis	5		Course Co	ode:			
No: 1	SBSMAT 01 01 01 C 3104								
Batch:	Programme:	Semester:	L	T	P	Credits	Contact Hrs per		
2021-2023	M.Sc. Mathematics	Ι					Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examinatio	on Duration	:	3 hours				
100 CIE: 30	Marks	Pre-requisite of course: Nil							
TEE: 70	Marks								
Course	The course wil	l develop a d	eep and rigo	orous under	rstanding of	real line $\mathbb R$ an	d of defining		
Objective	terms to prove numbers. The c compactness, s have wide range	ourse will als equential com	o develop th pactness an	ne understan Id connecte	nding of met	ric spaces and	convergence,		

 CO1: Understand many properties of the real line and learn to define sequence in terms of functions from N to a subset of R. CO2: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences. To calculate the limit superior, limit inferior of sequences and limit of a bounded sequence. CO3: Recognize bounded variation, total variation, directional derivatives, partial derivatives.
calculate the limit superior, limit inferior of sequences and limit of a bounded sequence.
and derivative as a linear transformation. CO4: Understand many properties of metric spaces and convergence, compactness sequential compactness and connectedness in metric spaces.
COURSE SYLLABUS
ns will be set, two from each of the UNIT. The candidates are required to attempt any five Il selecting at least one question from each section. All questions carry equal marks. Unit I

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks

Unit No.	Content of Each Unit				
		Each Unit			
Ι	[Course Outcome (s) No. : 1]	15			
	Real number system as complete ordered field, Archimedean property,				
	supremum, infimum, Bolzano-Weierstrass property, sequence and series, convergence, limsup, liminf, continuity, uniform continuity.				
II	[Course Outcome (s) No. : 2]	15			

	Space of continuous functions, sequence and series of functions, uniform and	
	pointwise convergence, Riemann sums and Riemann integral, Monotonic	
	functions, types of discontinuity.	
III	[Course Outcome (s) No.: 3]	15
	Function of bounded variation, total variations, function of bounded variations	
	expressed as difference of increasing functions, function of several variables,	
	directional derivatives, partial derivative, derivative as a linear transformation,	
	inverse and implicit function theorems.	
IV	[Course Outcome (s) No. : 4]	15
	Metric space and examples, open sets, closed sets, sequences in metric spaces	
	and convergence, compactness, sequential compactness, continuity and	
	compactness, Heine-Borel theorem, connected and path connected spaces,	
	components, Continuity and connectedness.	
Suggest	ed Readings:	
	1. Walter, R. Principles of Mathematical Analysis. 3rdedition, McGraw-Hill, 2017.	
	2. Simmons, G. F. Introduction to Topology and Modern Analysis. McGraw-Hill Pv	t. Ltd.
	2016.	
	3. Kumaresan, S. Topology of Metric Spaces. Narosa Publishing House, 2011.	
	4. Terence T. Analysis II. Hindustan Book Agency, 2009.	
	5. Malik, S. C. and Arora, S. Mathematical Analysis. 2 nd edition reprint. New Age	
	International Publishers 2005.	
	6. Apostol, T. M. Mathematical Analysis. 2 nd edition. Wesley Publishing Co. 2002.	
	7. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. N	larosa
	Publishing House, 1996.	

Course No:	Course Name: Algebra-I Course Code:								
2	SBSMAT 01 01 02 C 3								
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	Τ	P	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
	Aarks Aarks	Examination	Duration:	3	hours				
		Pre-requisite	e of course:	Nil					
Course Objective	philosophy of mathematics its	This course introduces the basic concepts of modern algebra such as groups and rings. The philosophy of this course is that modern algebraic notions play a fundamental role in mathematics itself and in applications to areas such as physics, computer science, economics and engineering.							
Course Outcomes:	CO1: Explain their role in mo	After completing this course, student is expected to learn the following: CO1: Explain the fundamental concepts of advanced algebra such as groups and rings and their role in modern mathematics and applied contexts.							
	CO2: Demonst	rate accurate ar	nd efficient us	e of advance	ed algebraic	techniques.			

CO3: Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from advanced algebra.

CO4: Apply problem-solving using advanced algebraic techniques applied to diverse situations in physics, engineering and other mathematical contexts.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.
 Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Groups, subgroup, normal subgroup, quotient group, homomorphism and	
	isomorphism, cyclic group, permutation group, Cayley's theorem, Lagrange	
	theorem	
II	[Course Outcome (s) No. : 2]	15
	Class equation, Cauchy's theorem, Sylow p-subgroups and its applications, Sylow	
	theorems, Direct product of groups, Structure of finitely generated abelian groups,	
	description of group of order p^2 and pq , where p and q are distinct primes (In	
	general survey of groups upto order 15).	

III	[Course Outcome (s) No. : 3]	15
	Rings, examples (including polynomial rings, formal power series rings, matrix	
	rings and group rings, integral domains, division rings, fields), ideals, prime and	
	maximal ideals, homomorphism and isomorphism of rings.	
IV	[Course Outcome (s) No. : 4]	15
	Factorization in domains, Euclidean domains, principal ideal domains and unique	
	factorizations domains, polynomial rings over UFD, polynomial rings over field,	
	irreducibility criteria.	
Suggested Red	adings:	

- 1. Gallian, J. A. Contemporary Abstract Algebra. 9th edition. Cengage Learning, 2015.
- 2. Lang, S. Algebra. 3rd edition, Springer 2012.
- 3. Herstein, I. N. *Topics in Algebra*. 2ndedition. John Wiley and Sons, 2006.
- Bhattacharya, P. B. Jain, S. K. and Nagpaul, S. R. *Basic Abstract Algebra*. 2nd edition, Cambridge University Press, 2003.
- 5. Khanna, V. K. and Bhammbri, S. K. A Course in Abstract Algebra. Vikas Publishing house, 1999.
- 6. Cohn, P. M. Algebra. Vols. I & II, John Wiley & Sons, 1991.
- Luther, S. and Passi, I. B. S. *Algebra*. Vol. I-Groups, Vol. II-Rings, Narosa Publishing House (Vol. I – 1996, Vol. II –1990).

Course	Course Name:	Complex Ana	lysis		Course Code:				
No: 3		SBSMAT 01 01 03 C 3104							
Batch:	Programme: M.Sc.	Semester:	L	T	Р	Credits	Contact Hrs per Week:		
2021-2023	Mathematics	Ι					4		
			3	1	0	4	Total Hours: 60		
Total Evaluation Marks: 100		Examination Duration: 3 hours							
CIE: 30 Marks		Pre-requisite of course: Nil							
TEE: 70 Marks									
Course Objective	In this course students will learn about the algebra and geometry of complex numbers, analyticity, contour integration and conformal mapping.								
Course	After completing this course, student is expected to learn the following:								
Outcomes:	CO1: Analyze harmonic function	-	differentiabili	ity, analytic	ity, Cauchy-	Riemann equa	ations and		
	CO2: Compute	complex cont	our integrals f	for their app	lications in (Cauchy integra	al theorem.		
	CO3: Transform	ize singulari	ties and poles.						
	CO4: Understa	nd the concept	of bilinear tra	ansformatio	n and confor	mal mapping.			
		C	OURSE SYL	LABUS					
NOTE:									
Eight questio	ons will be set, tw	o from each o	f the UNIT. T	'he candidat	es are requir	ed to attempt	anv five		

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five

questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks

Hour	rs of
Each	Unit
15	5
Cauchy-Riemann	
ions as mapping,	
bolic functions,	
15	5
tic functions, the	
nula, homotopic	
zeros, Rouche's	
Boursat theorem,	
15	5
arities, residues,	
15	5
ications. Mobius	
i	

Suggested Readings:

- 1. Saff, E. B. and Snider, A. D. Fundamentals of Complex Analysis with Applications to Engineering and Sciences. Pearson Education, 2014.
- 2. Conway, J. B. Functions of One Complex Variable, Springer, 2012.
- 3. Mathews, J. H. and Howell, R. W. *Complex Analysis for Mathematics and Engineering*. Jones & Bartlett Publishers, 2012.
- 4. Brown, J. B. and Churchill, R. V. *Complex Variables and Applications*. 8th edition, Tata McGraw-Hill Education, 2009.
- 5. Ponnusamy, S. Foundations of Complex Analysis. Alpha Science International, 2005.
- 6. Copson, E. T. Theory of Functions of Complex Variables. Oxford University Press, 1970.

Course	Course Name:	Course Code:							
No: 4				SBSMAT 01 01 04 C 3104					
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	P	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examination	n Duration:	: 3	3 hours				
100									
CIE: 30 Marks TEE: 70 Marks		Pre-requisite of course: Nil							
Course	1	of this course	e is to intr	oduce ordina	ry differentia	al equations,	fundamental		
Objective	The objective of this course is to introduce ordinary differential equations, fundamental theorems for existence and uniqueness and partial differential equations (PDE's). This course								
-	further explains the analytic techniques in computing the solutions of various ordinary differential equations and partial differential equations.								
Course	After completin	ng this course,	student is e	expected to lea	rn the follow	ing:			
Outcomes									
:	CO1: Understand ordinary differential equations of various types, their solutions and								
	fundamental co	oncepts about t	heir existen	ce.					
	CO2: Apply va	arious power s	eries metho	ds to obtain se	eries solution	s of differentia	l equations.		
	CO3: Solve the	e first-order lir	near and nor	n-linear PDE's	s by using La	grange's, Cha	rpit's		

method and Jacobi's method respectively and understand Cauchy problem for first order PDE's.

CO4: Determine the solutions of linear PDE's of second and higher order with constant coefficients, classify second order PDE's, solve standard PDE using separation of variable method and reduction to canonical form.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of					
		Unit					
Ι	[Course Outcome (s) No.: 1]	15					
	Preliminaries of ODE and PDE, existence and uniqueness theorems, existence of						
	independent solutions, Wronskian, Abel's formula, trajectories, orthogonality of						
	functions, orthonormal set of functions, singular solutions of first order ODEs,						
	system of first order ODEs, critical points (saddle, node, spiral etc).						
II	[Course Outcome (s) No.: 2]	15					
	General theory of homogeneous and non-homogeneous linear differential						
	equations, Sturm Liouville's boundary value problems, Green's function, regular						
	and singular points, power series solution of differential equation at regular and						

	irregular singular points, Bessel's and Legendre's equations and their solutions.	
III	[Course Outcome (s) No.: 3]	15
	Curves and surfaces in three dimensions, origin of PDEs, Lagrange's method,	
	orthogonal surfaces, Charpit's method and Jacobi method, special types of first	
	order PDEs, Cauchy problem for first order PDEs.	
IV	[Course Outcome (s) No.: 4]	15
	Solutions of higher order linear PDEs, method of separation of variables for	
	Laplace, heat, wave and diffusion equations, Canonical form and reduction to	
	canonical form.	
Suggest	ed Readings:	
1	. Simmons, G. F. Differential Equations with Applications and Historical Notes. 2nd educed and the second s	dition,
	Tata McGraw Hill, New Delhi, 2016.	
2	. Evans, L. C. Partial Differential Equations. 2nd edition, The Orient Blackswan, 2014	4.
3	. Lebedev, N. N. Special Functions and Their Applications. Revised, Courier Corpora	tion, 2012.
4	. Ross, S. L. Differential Equations. 3rd edition, Wiley India, 2007.	
5	. Sneddon, I. N. Elements of Partial Differential Equations. Dover Publications, 2006.	
6	. Bell, W. W. Special Functions for Scientists and Engineers. Courier Corporation, 200)4.
7	. Raisinghania, M. D. Advanced Differential Equations. S. Chand & Company Ltd., N 2001.	ew Delhi,
8	. Reid, W. T. Ordinary Differential Equations. John Wiley and Sons, New York, 1971	

Course	Course Name	: Programming	Programming in C Course Code:						
No: 5					SBSMAT 01 01 05 C 3104				
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: I	L	T	P	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examination	Duration:	3	hours				
100									
CIE: 30	Marks	Pre-requisite of course: Nil							
TEE: 70	Marks								
Course		be objective is to familiarize the students with problem solving through C- The course aims to give exposure to basic concepts of the C-programming. The							
Objective	1 0 0		0	-	-	1 0	C		
	lab component	of this course	is designed to	o provide ha	nds-on-trainin	g with the con	cepts.		
Course	After completi	ng this course	student is ex	nected to lea	rn the followi	no.			
Outcomes:	-	-		-		-			
	CO1: Classify data types and				ges and develo	op basic C prog	grams, to def		
	CO2: Use vari	ous C-operator	rs, expression	s and input/	output stateme	ents			
	CO3: Underst concept of arra		•	onditional b	pranching and	l loop structu	res and the		

CO4: Interprets the concepts of pointers, and classify functions and their usage

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No.: 1]	15
	An overview of programming, programming languages, classification, C	
	essentials program development, anatomy of a C function, variables, constants,	
	expressions, assignment statements, formatting source files, continuation	
	character, the pre-processor, scalar data types-declarations, different types of	
	integers, different kinds of integer constants, floating point types, initialization,	
	mixing types, explicit conversions-casts, data types	
II	[Course Outcome (s) No.: 2]	15
	Operators and expressions - precedence and associatively, unary plus and minus	
	operators, binary arithmetic operators, arithmetic assignment operators, increment	

	and decrement operators, comma operator, relational operators, logical operators,	
	bit manipulation operators, bitwise assignment operators, cast operator, size of	
	operators, conditional operator, memory operators, input/output functions.	
III	[Course Outcome (s) No.: 3]	16
	Control Flow - conditional branching, the switch statement, looping, nested loops,	
	break and continue statements, goto statement, infinite loops, Arrays - declaring	
	an array, arrays and memory, initializing arrays, encryption and decryption,	
	multidimensional arrays, strings.	
IV	[Course Outcome (s) No.: 4]	14
	Functions - passing arguments, declarations and calls, recursion, the main ()	
	function, passing arrays as function arguments. Pointers - pointer arithmetic,	
	accessing array elements through pointers, passing pointers as function	
	arguments, arrays of pointers.	
Suggestee	d Readings:	
1.	Balagurusamy, E. Programming in ANSI C. 3rdedition. TATA McGraw Hill, 2016.	
2.	Brain W. K. and Ritchie D. M. C Programme Language. 2 nd edition, Pearson, 2015.	
3.	Darnell, P. A. and Margolis, P. E. C: A Software Engineering Approach. Narosa Public	shing,
	House (Springer International Student Edition), 2012.	
4.	Yashavant, P. K. Let Us C. BPB Publication, 2008.	
5.	Byrons, G. Programming With C. 2 nd edition, Schaum's Series, 1996.	

Course	Course Name	: Lab Program	ming in C		Course Co	de:		
No: 6					SBSMAT 01 01 06 C 0021			
Batch:	Programme :	Semester:	L	T	Р	Credits	Contact Hrs per Week:	
2021-2023							2	
	M.Sc.	Ι						
	Mathematics		0	0	2	1	Total	
							Hours: 60	
Total Evalu	ation Marks:	Examination	Duration:	:	3 hours			
100								
	Marks Marks	Pre-requisite	of course:	: IN11				
Course	The lab compo	onent of this co	urse is desi	gned to pro	ovides hands-o	on-training to th	he concepts of	
Objective	C-programmin	ng covered in th	eory classe	es.				
Course	After complet	ing this course,	student is o	expected to	learn the foll	owing:		
Outcomes:	CO1: Gain ba	sic skills to wri	te C-progra	ams for sin	ple mathemat	tical problems		
	CO2: Able to	write moderat	e C-progra	ums for pro	blem solving	with the help	of control flow	
	statements, C-	operators and fi	unctions.					
	CO3: Unders	tand to implem	ent various	s matrix or	perations with	the help of A	rray and able to	
	CO3: Understand to implement various matrix operations with the help of Array and able to use string operation in C-programs							
	CO4: Develop	the C-program	ns for some	e mathemat	ical functions	and real life pr	oblems	
	<u> </u>	(COURSES	SYLLABU	JS			
NOTE:								

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.
 Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No.: 1,2]	8
	1. Write a program (WAP) to understand concept of scanf and printf	
	2. WAP to swap two nos. using third variable	
	3. WAP to swap two nos. without using third variable.	
	4. WAP to convert temperature from Fahrenheit into Celsius.	
	5. WAP to find area and perimeter of rectangle.	
	6. WAP to find largest of two nos.	
	7. WAP to find largest of three nos.	
	8. WAP to find whether no. is even or odd	
	9. Using conditional operator find largest of two nos.	
	10. Using conditional operator find largest of three nos.	
	11. WAP that will take four digit no. and find sum of digits.	
	12. WAP to print 1 to 10 nos.	
	13. WAP to find roots of quadratic eq.	
	14. WAP to find sum of first n natural nos.	
	15. WAP to find average of n nos.	
	16. WAP to find reverse of no.	
	17. WAP for the function $f(x)$ using conditional operator	

	$f(x) = \begin{cases} -1 & x \\ 0 & x \\ 1 & x \end{cases}$	x < -5.0 - 5.0 $\le x \le$ x > 5.0	\$ 5.0						
	18. WAP to compu	te 1+1/2+1/3	+1/4++1/n						
	19. WAP to display	y nos. which a	are divisible by n b/w 1 & 1000.						
	20. WAP to convert lowercase text to uppercase								
II	[Course Outcome	(s) No. : 1,	2,4]	8					
	21. WAP to genera	te Fibonacci	series.						
	22. WAP to find nt	h term in Fib	onacci series.						
	23. WAP to find fa	ctorial of no.	using while, for, do-while loop.						
	24. WAP to check	whether no. i	s prime or not						
	25. WAP to check	whether no. i	s palindrome or not						
	26. WAP to display	y prime numb	pers in between two numbers a and b.						
	27. Print multiplica	tion table of	given no. using do while.						
	28. WAP to find w	hether given	no. is Armstrong or not.						
	29. Write a menu driven program which has following option: factorial, prime,								
	odd or even, exit								
	30. PRINT PATTI	ERNs							
	1	1	*						
	23	12	***						
	456	123	****						
	31. WAP to conver	t decimal no	into binary and vice-versa.						
	32. WAP to print fo	ollowing patte	ern						
	1								
	232								
	34543								
	4567654								

44 | Page

	33. WAP to print following pattern						
	1						
	101						
	101						
	10101						
	34. WAP to compute the following polynomial at any point						
	$P(x) = x^3 - x^5 + x^7 - x^9 + \dots n$						
	35. $1/2(x-1/x) + 1/2(x-1/x)^2 + 1/2(x-1/x)^3 + + n$						
	36. $S = 1 + x^2 + x^4 + x^6 + \dots + n$						
	37. S= x- $x^3/3! + x^5/5! - x^7/7! + \dots n$						
	38. Ackerman function:-						
	A(m,n) = n+1, m=0						
	A(m-1), m!=0, n=0						
	A(m-1, A(m,n-1)), m!=0, n!=0						
	39. WAP to find factorial of integer using recursion and without recursion						
	40. WAP to swap 2 nos. by call by reference						
III	[Course Outcome (s) No.: 1, 2, 3]	8					
	41. WAP to sort n numbers using array						
	42. To display nth no. stored in array						
	43. WAP to demonstrate what kind of operation can be performed on pointers.						
	44. WAP to pass 1-d array to function & using this function find 2 largest						
	element						
	45. WAP to add two matrices.						
	46. WAP to multiply two matrices						
	47. WAP to find transpose of matrix						
	48. WAP to find greatest and smallest element in an array						

	49. WAP to insert an element at a location in an array							
	50. WAP to delete an element from a location in an array							
	51. Linear and Binary search							
	52. Bubble sorting							
	53. WAP to find 2^{nd} largest and 2^{nd} smallest an element in an array							
	54. WAP to input string from terminal & display it							
	55. WAP to find reverse of string							
	56. Enter two strings & compare them using inbuilt function.							
	57. To convert string to lowercase to uppercase							
	58. String concatenation							
	59. Display ascii value of individual character of string							
	60. To find a character in string, display location & no. of occurrences.							
IV	[Course Outcome (s) No. : 2, 3, 4]	8						
1,		Ū						
	61. WAP C Program to Calculate the Simple Interest							
	62. WAP C Program to Find the GCD and LCM of Two Integers							
	63. WAP C Program to find HCF of a given Number using Recursion							
	64. WAP C Program to Calculate the Value of sin(x)							
	65. WAP C Program to Calculate the Value of $cos(x)$							
	66. WAP C Program to Calculate the Sum of cos(x) Series							
	67. WAP C Program to Find the Sum of First N Natural Numbers							
	68. WAP to find prime numbers in a given range							
	69. WAP C Program to Calculate the Mean, Variance & Standard Deviation							
	70. WAP C Program to Evaluate the given Polynomial Equation							
	71. WAP C program to Calculate the value of nCr							
	72. WAP C Program to Find & Display Multiplication Table							
	73. WAP to create, initialize, assign and access a pointer variable.							
	74. WAP to swap two numbers using pointers.							
	75. WAP to change the value of constant integer using pointers.							

76. WAP to print a string using pointer.

77. WAP to count vowels and consonants in a string using pointer.

78. WAP to read array elements and print with addresses.

79. WAP to print size of different types of pointer variables.

80. WAP to demonstrate example of array of pointers.

Suggested Readings:

- 1. Balagurusamy, E. Programming in ANSI C. 3rdedition. TATA McGraw Hill, 2016.
- 2. Brain W. K. and Ritchie D. M. C Programme Language. 2nd edition, Pearson, 2015.
- 3. Darnell, P. A. and Margolis, P. E. *C: A Software Engineering Approach*. Narosa Publishing, House (Springer International Student Edition), 2012.
- 4. Yashavant, P. K. Let Us C. BPB Publication, 2008.
- 5. Byrons, G. Programming With C. 2nd edition, Schaum's Series, 1996.

Course	Course Name	: Introduction	to Mathematic	al Analysis	Course	Code:			
No: 7						SBSMAT 01 01 01 GEC 3104			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evaluation Marks: Examination Duration: 3 hours 100 700 700 CIE: 30 Marks 900 Pre-requisite of course: Nil 700									
TEE: 70	Marks								
Course	The course wil	l develop a de	ep and rigorous	s understandi	ng of sets a	and functions,	and defining		
Objective	terms to prove	the results on	convergence of	f sequences a	nd series, o	lefining limit,	, continuity,		
	differentiabilit applications in	e e	ometrical repres	sentation. The	ese concep	ts have wide 1	ange of		
Course	After completi	ng this course	, student is exp	ected to learn	the follow	ring:			
Outcomes:									
		CO2: Define functions and their classifications, including algebraic and transcendental functions and their geometric representations.							

CO3: Define sequences in term of functions from N to R and their convergences.

CO4: Recognize limit, continuity and differentiability and their geometrical interpretation.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Sets, different kinds of sets, infinite and finite sets, countability, types of	
	relations - void, universal, reflexive, symmetric, transitive and equivalence	
	classes, complex numbers, graphic representation and properties, polar form of	
	complex numbers, de Movier's theorem.	
II	[Course Outcome (s) No.: 2]	15
	Functions, domain, co-domain, range, classification of real functions, algebraic	
	and transcendental functions, even and odd functions, periodic functions, graphs	
	of some important functions.	

III	[Course Outcome (s) No. : 3]	15
	Definition of sequence and its convergence, series and convergence. Quadratic	
	equations and roots, nature of roots.	
IV	[Course Outcome (s) No.: 4]	15
- '	Limits, continuity and differentiability: Limit of a function, fundamental	10
	theorem on limits, methods of evaluating limits, existence of limit, left hand and	
	right hand limit, continuity at a point, continuity in an interval, differentiability	
	of a function at a point and in an interval, geometrical interpretation.	
Suggeste	d Readings:	
1	Walter, R. Principles of Mathematical Analysis. 3rdedition, McGraw-Hill, 2017.	
2	Ram, B. Discrete Mathematics. Pearson Education, 2012.	
3	Malik, S. C. and Arora, S. Mathematical Analysis. 2 nd edition. New Age Internationa	al
	Publishers, 2005.	
4	Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Na	rosa
	Publishing House, 1996.	
5	Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th complex an Edition, New	York, 1993

Course	Course Name:	Mathematics	for Chemists		Course Code:				
No: 8					SBSMAT 01 01 02 GEC 3104				
Batch:	Programme:	Semester:	L	T	Р	Credits	Contact		
							Hrs per		
	M.Sc.						Week:		
2021-2023	Mathematics	Ι					4		
			3	1	0	4	Total		
							Hours: 60		
Total Evalu	ation Marks:	Examinatio	Examination Duration: 3 hours						
100									
CIE: 30	Marks	Pre-requisite of course: Nil							
TEE: 70	Marks								
Course	The main object	ive of this cou	Irse is to intro	duce the stu	udents to the	exciting work	d of numerical		
Objective	analysis, differen						• • • • • • • • • • • • • • • • • • • •		
Ū	-				.1 . 6 . 11				
Course	After completing	g this course,	student 1s exp	ected to lea	irn the follow	/ing:			
Outcomes:	CO1: Learn the	basics of nun	nerical analysi	s, to calcul	ate the errors	in approxima	tions and their		
	properties.								
	CO2: Understar	d the basics	of differential	aquations t	o colve the f	rst order lines	r differential		
				•	o solve the h	ist order fillea			
	equations and se		inerentiai equa	au0115.					
	CO3: Analyze	the singular p	oints, power s	eries soluti	on of differe	ntial equation	at regular and		
	irregular singula	r points, Bess	sel's and Lege	ndre's equa	ations and the	eir solutions.			
	CO4: Use the	basics tools of	of statistics ar	nd by using	g these tech	niques to me	asures central		
		CO4: Use the basics tools of statistics and by using these techniques to measures central							

tendency, learn Gaussian and Binomial distributions.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1]	15
	Algebraic, transcendental functions, approximation, errors in approximation,	
	absolute, relative and percentage errors, matrices and their properties, some	
	special matrices, matrix algebra, the inverse matrix, linear transformations,	
	orthogonal matrices and orthogonal transformations.	
II	[Course Outcome (s) No.: 2]	15
	Solution of differential equations, first-order linear equations- separable	
	equations, homogeneous linear equations, non-homogeneous linear equations,	
	second-order differential equations with constant coefficients, general solution,	
	particular solution, linear equations in chemical kinetics, harmonic oscillator and	
	some other applications	

III	[Course Outcome (s) No.: 3]	15
	Singular points, power series solution of differential equation at regular and	
	irregular singular points, Bessel's and Legendre's equations and their solutions,	
	partial differentiation, types of partial differential equations.	
	Line integrals, double integrals, change of variables, polar coordinates, volume	
	integrals, Laplacian operator, finite difference operators.	
IV	[Course Outcome (s) No.: 4]	15
	Descriptive statistics, measures of central tendency, measures of dispersion,	
	frequency and probability, permutations and combinations, binomial	
	distribution, Gaussian distribution.	
Suggested I	Readings:	
1.	Gupta, S. C. and Kapoor, V.K. Fundamentals of Mathematical Statistics. S. Chand &	Sons,
	2014.	
2.	Steiner, E. The Chemistry Maths Book. 2 nd edition, Oxford University Press, 2008.	

3. Lipschutz, S. and Lipson, M. Linear Algebra. 3rd edition, Tata McGraw-Hill, 2005.

4. Raisinghania, M. D. *Advanced Differential Equations*. S. Chand & Company Ltd. New Delhi, 2001.

Course	Course Name:	Basic Mathematic	es for Social So	cience	Course C	code:	
No: 9					SBSMAT	01 01 03 G	EC 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4
		-	3	1	0	4	Total Hours: 60
Total Evalu	ation Marks:	Examination D	uration:	3 hour	`S		
	Marks Marks	Pre-requisite of	`course: Nil				
Course	The main objec	tive of this course	is to encourag	e students to	develop a v	working kno	wledge of
Objective	the basic Mathe	matics for social s	cience and wil	l present som	ne of the id	eas that form	the
	foundation of q	uantitative work ir	the social sci	ences. In part	icular, topi	cs from loga	rithm, set
	theory, matrix t	heory and calculus	s will be discus	ssed with emp	phasis on th	ne understan	ding of
	concepts and th	e development of	intuition.				
Course	After completin	g this course, stud	lent is expected	d to learn the	following:		
Outcomes:	-	he fundamental co	-	ces, logarithm	n and antilo	garithm and	their role
	in basic Mather	natics for social sc	eience.				
	CO2: Demonst	rate accurate and e	efficient use of	set theory an	id Venn dia	ıgram.	
		nd and use the terr rmutations and Co		elation, series	s arithmetic	, geometric	

	CO4: Understand the concepts and properties of limits, continuity and differentiation	n of a
	function, logical reasoning, probability and descriptive statistics.	
	COURSE SYLLABUS	
NOTE:		
Eight question	ons will be set, two from each of the UNIT. The candidates are required to attempt any	y five
questions in	all selecting at least one question from each section. All questions carry equal marks.	Unit I will
be taught via	online mode.	
OR		
1. Question n	o. 1 has seven parts and students need to answer any four. Each part carries three and	half Marks.
2. Question n	o. 2 to 5 have three parts and student need to answer any two parts of each question	n. Each part
carries seven	marks	
Unit No.	Content of Each Unit	Hours of
Unit No.	Content of Each Unit	Hours of Each Unit
Unit No.	Content of Each Unit [Course Outcome (s) No. : 1]	
	[Course Outcome (s) No. : 1]	Each Unit
	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of	Each Unit
	[Course Outcome (s) No.:1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical	Each Unit
	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration,	Each Unit
	[Course Outcome (s) No.:1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws,	Each Unit
	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration,	Each Unit
	[Course Outcome (s) No.:1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws,	Each Unit
I	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations.	Each Unit
I	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations. [Course Outcome (s) No. : 2]	Each Unit
I	[Course Outcome (s) No. : 1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations. [Course Outcome (s) No. : 2] Introduction of sequences, series arithmetic and geometric progression,	Each Unit
I	[Course Outcome (s) No.:1] Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations. [Course Outcome (s) No.:2] Introduction of sequences, series arithmetic and geometric progression, relationship between AM and GM. Basic concepts of permutations and	Each Unit

	function; Greatest Integer function, Signum function), Graphical representation of	
	functions.	
III	[Course Outcome (s) No. : 3]	15
	Concept of limits and continuity of a function, instantaneous rates of change,	
	differentiation as a process of finding derivative, derivatives of algebraic functions	
	using Chain rule. Mathematically acceptable statements, connecting words/	
	phrases in Mathematical statement consolidating the understanding of "if and only	
	if (necessary and sufficient) condition", "implies", "and/or", "implied by", "and",	
	"or", "there exists" and their use through variety of examples related to real life	
	and Mathematics problems based on logical reasoning (coding-decoding, odd man	
	out, blood, relation, syllogism etc).	
IV	[Course Outcome (s) No. : 4]	15
	Random experiment, sample space, events, mutually exclusive events. Independent	
	and dependent Events, law of total probability, Bayes' Theorem. Data on various	
	scales (nominal, ordinal, interval and ratio scale), data representation and	
	visualization, data interpretation (dispersion, deviation, variance, skewness and	
	kurtosis), percentile rank and quartile rank, correlation (Pearson and Spearman	
	method of correlation), applications of descriptive statistics using real time data.	

Suggested Readings:

- 1. Gill J. Essential Mathematics for Political and Social Research, Cambridge University Press, 2016.
- 2. Haeussler E., Paul R. and Wood R. *Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences*, 15th edition. Prentice-Hall, 2015.
- Goldstein L., Lay D., and Schneider D. *Calculus and Its Applications*, 14th Edition. Prentice Hall, 2014.
- 4. Hagle T. Basic Math for Social Scientists: Problems and Solutions, 1996.
- 5. Hagle T. Basic Math for Social Scientists: Concepts, 1996.
- 6. Kleppner D. and Ramsey N. Quick Calculus. Wiley, 1995.
- 7. Namboodiri K. Matrix Algebra: An Introduction. Sage Publications # 38, 1994.

Course	Course Name:	ame: Linear Algebra Course Code:							
No: 10						SBSMAT 01 02 01 C 3104			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L	T	Р	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evalu 100	ation Marks:	Examinatio	on Duration	1:	3 hours				
	Marks	Pre-requisi	te of cours	e: Nil					
	Marks								
Course	To give a brief in		_			-			
Objective	and various linear respective fields	-	which can b	be used by s	tudent for fu	rther applicat	ions in their		
Course	After completing	this course.	student is e	expected to	learn the foll	owing:			
Outcomes:	CO1: Describe various vector sp	the concepts paces and sub	of the term	ns basis, di	mension, and	l apply these	-		
	CO2: Use the basis, including	concept of linear transformations, matrix representation and change of g kernel, range.							
	CO3: Understa	and the no	tion of b	ilinear for	rms, triangu	larization a	nd primary		

SEMESTER – II

decomposition theorem

CO4: Compute inner products and determine orthogonality on vector spaces, applying Gram-Schmidt orthogonalization process to find the orthonormal basis.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	System of linear equation, vector spaces: definition and examples, subspaces,	
	linear dependence, basis and dimension, sum and direct sum, quotient	
	spaces, linear transformations: kernel and image of a linear transformation,	
	rank and nullity of a linear transformation, matrix mappings.	
II	[Course Outcome (s) No. : 2]	15
	Linear mappings and matrices: matrix representation of linear	
	transformation, change of basis, similarity, polynomial of matrices,	
	characteristic polynomial, Cayley-Hamilton theorem, diagonalization,	

	minimal polynomial, companion matrix.	
ш	[Course Outcome (s) No. : 3]Canonical and bilinear forms: triangular form, invariance, primary decomposition, Jordon canonical form, rational canonical form, bilinear and quadratic forms, reduction and classification of quadratic forms.	15
IV	[Course Outcome (s) No. : 4]Inner product space, examples and properties, norms and distances, orthonormal basis, the Gram-Schmidt orthogonalization, orthogonal complements, the adjoint of a linear operator on an inner product space, normal and self-adjoint operators, unitary operators.	15
Suggeste	ed Readings:	
1	. Hoffman, K. and Kunze, R. Linear Algebra. 2 nd edition, Pearson India, 2015.	
2	. Axler, S. Linear Algebra Done Right. 2 nd edition, Springer-Verlag, 2014.	
3	. Lang, S. Linear Algebra. 3rd edition, Springer-Verlag, New York, 2013.	
4	. Lipschutz, S. and Lipson, M. Linear Algebra. 3rd edition, Tata McGraw-Hill, 2005.	
5	. Friedberg, S. H., Insel, A. J. and Spence, L. E. Linear Algebra. 4th edition, 2002	

Course No:	Course Name:	Topology			Course Co	de:				
11					SBSMAT (AT 01 02 02 C 3104				
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L	T	Р	Credits	Contact Hrs per Week: 4			
			3	1	0	4	Total Hours: 60			
Total Evalua 100	Total Evaluation Marks:		Examination Duration: 3 hours							
	Marks Marks	Pre-requisite of course: Nil								
Course	This course aim	s to teach the fu	ndamentals	of point set t	opology and	l constitute an	1			
Objective	awareness of ne			-						
	many further int	eresting general	izations of	metric space	have been d	eveloped.				
Course	After completin	g this course, stu	udent is exp	ected to learn	the followi	ng:				
Outcomes:		et topological spaces from metric spaces and using general properties of s, open sets, close sets, basis and sub-basis								
		e properties of open sets, close sets, interior points, accumulation points and leriving the proofs of various theorems								
		CO3: Understand the concepts of countable spaces and separable spaces								

CO4: Learn the concepts and properties of the compact and connected topological spaces

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit					
		of Each				
		Unit				
Ι	[Course Outcome (s) No. : 1]	15				
	Definition and examples of topological spaces, basis and sub-basis, open sets,					
	closed sets, interior points, limit points, boundary points, exterior points of a set,					
	closure of a set, derived set, Hausdorff spaces.					
II	[Course Outcome (s) No. : 2]	15				
	Subspace topology, continuous functions, metric topology, convergence of					
	sequences, sequential continuity, open and closed mappings, homeomorphism,					
	pasting lemma, product topology, Tychonoff theorem.					

III	[Course Outcome (s) No. : 3]	15
	Connectedness, continuity and connectedness, connected subsets of the real line,	
	components, path connectedness, locally connected, locally path connected.	
	Compactness and its characterizations, compact subspace of the real line,	
	continuity and compact sets, compactness and finite intersection property.	
IV	[Course Outcome (s) No. : 4]	15
	Countability and separation axioms, T ₀ , T ₁ , T ₂ , Lindelof spaces, regular and	
	normal spaces, Urysohn Lemma, metrization theorems (Urysohnmetrization,	
	Nagata-Smirnov metrization theorem), Tietze extension theorem,	
	compactification.	
Suggested	l Readings:	
1. Jos	shi, K. D. Introduction to General Topology. 2 nd edition, New Age Internation	al Private
Li	mited, 2017.	
2. M	unkres, J. R. Toplogy. Pearson Education, 2017.	
3. Sin	mmons, G. F. Introduction to Topology and Modern Analysis. Tata McGraw-Hill	Education,
20	16.	
4. Pe	rvin, W. J. Foundations of General Topology. Academic Press, 2014.	
5. Sii	ngh, T. B. Elements of Topology. CRC Press, Taylor Francis, 2013.	
6. Ke	elley, J. L. General Topology. 2nd edition, Springer, New York, 1991.	

Course	Course Name: Numerical Analysis				Course Code:				
No: 12					SBSMAT	01 02 03 C 3	104		
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L	T	Р	Credits	Contact Hrs per Week: 4		
			3	1	0	4	Total Hours: 60		
Total Evalu 100	ation Marks:	Examination Duration: 3 hours							
CIE: 30	CIE: 30 Marks		Pre-requisite of course: Nil						
Course	The rapid grow	th of science a	nd technolog	gv during la	st few decade	es has made a	tremendous		
Objective									
Objective	change in the nature of various mathematical problems. It is very difficult and almost impossible to get analytical solutions in case of many of these problems. These shortcomin of analytical solutions lead us to various numerical techniques developed for different types mathematical problems seem to be an excellent option. The course objective is to acquaint t students with a wide range of numerical methods to solve algebraic and transcendent equations, linear system of equations, interpolation and curve fitting problems, numeric integration, initial and boundary value problems, etc.					hortcomings rent types of acquaint the anscendental			

Course	After completing this course, student is expected to learn the following:					
Outcomes:	CO1: Overview the errors in computation and their measurements					
	CO2: Apply numerical techniques to obtain approximate solutions to otherwise intractable mathematical problems					
	CO3: Learn numerical technique to find the solutions of nonlinear equations, system of linear equations, interpolation problems, numerical differentiations and integration, Initial and boundary value problems					
	CO4: Familiarized the students with convergence, advantages and limitations of these numerical techniques					

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit			
		Each		
		Unit		
Ι	[Course Outcome (s) No. : 1, 2, 3, 4]	16		
	Errors in approximation, absolute, relative and percentage errors, round-off error.			
	Solution of algebraic and transcendental equations: bisection method, Regula			
	Falsi method, Secant method, method of iteration, Newton Raphson method,			

	order of convergence. Systems of simultaneous equations: Gauss elimination	
	method, Gauss Jordon method, LU decomposition method, Iterative methods:	
	Jacobi method and Gauss-Seidel method.	
II	[Course Outcome (s) No. : 2, 3, 4]	14
	Finite differences, Interpolation techniques for equal intervals-Newton forward	
	and backward, Gauss forward, Gauss Backward, Stirling, Bessel formulae.	
	Interpolation with unequal intervals-Newton's divided difference method,	
	Lagrange method. Hermite interpolation, Power method for eigenvalue problem.	
III	[Course Outcome (s) No.: 2, 3, 4]	16
	Numerical differentiation using Newton forward and backward formulae.	
	Numerical integration: Newton-Cotes formulas, trapezoidal rule, Simpson rule,	
	Gauss-Legendre, Gauss-Chebyshev formulas, Romberg's integration, Curve	
	fitting: straight line fitting, parabolic curve fitting, fitting of exponential curve,	
	fitting of other curves. Cubic splines	
IV	[Course Outcome (s) No.: 2, 3, 4]	14
	Solution of ordinary differential equations: Taylor series method, Picard's	
	method, Euler method, Euler modified method, Runge-Kutta methods, Milne's	
	and Adam's predictor and corrector methods. Finite difference method for	
	boundary value problems.	
L		

Suggested Readings:

- Gupta, R. K. Numerical Methods: Fundamentals and Applications. 1st edition, Cambridge Universi Press, 2019.
- 2. Thangaraj, P. Computer Oriented Numerical Methods. PHI Learning Pvt. Ltd, 2013.
- 3. Jain, M. K., Iyengar, S. R. K. and Jain, R. K. *Numerical Methods for Scientific & Engineering Computation*. New Age International, 2012.
- 4. Burden R. L. and Faires J. D. Numerical Analysis. 9th Edition, Cengage Learning, 2011.
- 5. Chapra, S. C. and Canale, R. P. *Numerical Methods for Engineers*. McGraw Hill, International Edition, 1998.
- 6. Mathews, J. H. *Numerical Methods for Mathematics, Science and Engineering*. Prentice- Hall, International Editions, 1992.

Course No:	Course Name: Lab For Numerical Analysis			sis	Course Code:			
13					SBSMAT 01 02 04 C 0021			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L	T	Р	Credits	Contact Hrs per Week: 2	
			0	0	2	1	Total Hours: 32	
Total Evaluation Marks: 100		Examination Duration: 3 hours						
CIE: 30 Marks		Pre-requisite of course: Nil						
TEE: 70]	Marks							
Course	The lab compon	ent of this cour	rse is aim to	o design the	programs on	C/C++/MAT	LAB for	
Objective	various numeric	al methods cov	rered in the	course.				
Course	After completin	g this course, s	tudent is ex	spected to le	arn the follo	wing:		
Outcomes:	CO1: Write effiorer		documente	d codes for	various num	erical methods	s and presen	
	CO2: Able to so accuracy using o	•		he theory pa	aper (Numer	ical Analysis)	with more	
		CO	URSE SYI	LABUS				
NOTE:								
	ons will be set, two	o from each of	tha UNIT '	The condide		1	<i></i>	

questions in all selecting at least one question from each section. All questions carry equal marks. Unit I

will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit					
		Each				
		Unit				
Ι	[Course Outcome (s) No. : 1, 2]	8				
	 To detect the interval(s) which contain(s) root of equation f(x)=0 and implement bisection method to find root of f(x)=0 in the detected interval. To find the root of f(x)=0 using Regula Falsi and Secant methods To find the root of f(x)=0 using Newton -Raphson and fixed point iteration methods. To solve linear system of equations using Gauss elimination (without pivoting) method. 					
Π	[Course Outcome (s) No. : 1, 2] 5. To solve linear system of equations using Gauss Jordan method. 6. To solve linear system of equations using Jacobi and Gauss-Seidel methods	8				
	7. To compute the intermediate value using the Newton's forward					

	difference interpolation formula.	
	8. To implement Lagrange interpolation formula	
III	 [Course Outcome (s) No.: 1,2] 9. To compute Newton divided difference (NDD) table and use it compute interpolating value with NDD formula. 10. To integrate a function numerically using trapezoidal and Simpson's rules. 11. To compute integration numerically from a data set using trapezoidal and Simpson's rules 	8
	12. To fit a straight line to a given data set	
IV	 [Course Outcome (s) No. : 1, 2] 13. To solve the initial value problem using Euler and modified Euler's methods. 14. To apply Milne's and Adam's predictor and corrector methods for solution of initial value problems 15. To solve the initial value problem using Runge-Kutta methods. 16. To apply finite difference method for boundary value problems 	8

Suggested Readings:

 Gupta, R. K. Numerical Methods: Fundamentals and Applications. 1st edition, Cambridge University Press, 2019.

General Resources: C-Programs available online at https://www.cambridge.org/

- 2. Thangaraj, P. Computer Oriented Numerical Methods. PHI Learning Pvt. Ltd, 2013.
- 3. Burden R.L. and Faires J. D. Numerical Analysis. 9th Edition, Cengage Learning, 2011.
- 4. Chapra, S. C. and Canale, R. P. *Numerical Methods for Engineers*. McGraw Hill, International Edition, 1998.
- 5. Mathews, J. H. *Numerical Methods for Mathematics, Science and Engineering*. Prentice- Hall, International Editions, 1992.

Course	Course Name	: Typesetting In Latex Course Code:						
No: 14					SBSMAT 01 02 05 C 2023			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L	T	P	Credits	Contact Hrs per Week: 4	
			2	0	2	3	Total Hours: 60	
Total Evalu	ation Marks:	Examinatio	on Duration:	3 ho	urs			
100								
CIE: 30	Marks	Pre-requisi	te of course: N	il				
TEE: 70	Marks							
Course	The purpose of	f this course i	his course is to acquaint students with the latest typesetting skills, which shall					
Objective	enable them to	prepare high	quality typeset	ing, beamer p	resentation a	nd drawing g	graphs.	
Course	After completi	ng this course	e, student is exp	ected to learn	the following	j.		
Outcomes:	CO1: Typeset	mathematica	l formulas, use	nested list, tab	ular & array	environment	s.	
	CO2: Create	or import graj	phics.					
	CO3: Use alignment command and multiline formulas, bibliography and citation, making index and glossary.							
	CO4: Use bea Thesis and Bo		presentation and	d typeset math	ematical Pro	jects, Dissert	ation,	

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1, 3]	15
	Preparing an input file, sentences and paragraphs, the document class,	
	sectioning, display material, running Latex, changing the type style, producing	
	mathematical symbols and mathematical formulae, arrays, delimiters, multiline	
	formulae, putting one thing on other, spacing in math mode.	
II	[Course Outcome (s) No. : 2, 3]	15
	Defining command and environments, producing and including graphics in a	
	Latex file, figures and other floating bodies, lining it up in columns, table of	
	content, cross-reference, bibliography and citation, making index and glossary,	
	slides, overlays and notes, letters.	

III	[Course Outcome (s) No. :1, 3, 4]	15
	Design it yourself: document class, page style, title page, customizing the	
	style, line and page breaking, numbering, length, spaces and boxes, formatting	
	with boxes, centring and flushing, list making environments, changing font	
	type size and special symbols, picture, picture environments, picture objects,	
	text, boxes, straight lines, arrow, stacks, circles, oval, framing, curve, grid,	
	repeat patterns.	
IV	[Course Outcome (s) No. : 3, 4]	15
	Making presentation slides in beamer class Latex, various styles in beamer	
	presentation, dynamic slides. postscript macros for generic tex (pstrix):	
	arguments, dimension, coordinates, angles, line styles, fill styles, custom	
	styles, custom graphics, picture tools, text tricks, node and connection special	
	tricks, basics of mathjax, mathjax configuration options.	
Suggest	ed Readings:	
1	. Kottwitz, S. LaTeX Beginner's Guide. Packt Publishing Ltd., UK, 2011.	
2	2. Leslie L. A Document Preparation System User's Guide and Reference Manual, Ad	ldison-
	Wesley Publishing Company, 2001.	
3	E. Tantau, T. User Guide to the Beamer Class, <u>http://latex-beamer.sourceforge.net</u> .	
4	. Oetiker, T. The Not So Short Introduction to LATEX2E, https://tobi.oetiker.ch/lshort	/lshort.pdf.

Course	Course Name	: Typesetting	in Latex		Course Co	ode:	
No: 15					SBSMAT	01 02 01 GEO	C 2124
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	Τ	Р	Credits	Contact Hrs per Week: 4
			2	0	2	3	Total Hours: 60
Total Evalu	ation Marks:	Examinatio	on Duration:	3	hours		1
CIE: 30	Marks	Pre-requisi	te of course: 1	Nil			
TEE: 70	Marks						
Course Objective	The purpose of this course is to acquaint students with the latest typesetting skills, which shall enable them to prepare high quality typesetting, beamer presentation and drawing graphs.						
					•		8 P
Course Outcomes:	After completi CO1: Typeset CO2: Create	mathematica	l formulas, use	-		-	ts.
	CO3: Use aligindex and glos		nand and multi	line formulas	s, bibliography	and citation,	making
	CO4: Use bea Thesis and Bo		presentation a	nd typeset ma	athematical Pr	ojects, Disser	tation,
			COURSE SY	LLABUS			
NOTE:							
Eight question	ons will be set, t	wo from each	n of the UNIT.	The candidat	tes are require	d to attempt a	ny five
questions in	all selecting at l	least one ques	stion from each	section. All	questions carr	y equal mark	s. Unit I

will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1, 3]	15
	Preparing an input file, sentences and paragraphs, the document class,	
	sectioning, display material, running Latex, changing the type style, producing	
	mathematical symbols and mathematical formulae, arrays, delimiters, multiline	
	formulae, putting one thing on other, spacing in math mode.	
II	[Course Outcome (s) No.: 2,3]	15
	Defining command and environments, producing and including graphics in a	
	Latex file, figures and other floating bodies, lining it up in columns, table of	
	content, cross-reference, bibliography and citation, making index and glossary,	
	slides, overlays and notes, letters.	
III	[Course Outcome (s) No. :1, 3, 4]	15
	Design it yourself: document class, page style, title page, customizing the style,	
	line and page breaking, numbering, length, spaces and boxes, formatting with	
	boxes, centring and flushing, list making environments, changing font type size	
	and special symbols, picture, picture environments, picture objects, text, boxes,	
	straight lines, arrow, stacks, circles, oval, framing, curve, grid, repeat patterns.	
IV	[Course Outcome (s) No.: 3,4]	15
	Making presentation slides in beamer class Latex, various styles in beamer	
	presentation, dynamic slides. postscript macros for generic tex (pstrix):	
	arguments, dimension, coordinates, angles, line styles, fill styles, custom styles,	
	custom graphics, picture tools, text tricks, node and connection special tricks,	

- Leslie L. A Document Preparation System User's Guide and Reference Manual, Addison-Wesley Publishing Company, 2001.
- 7. Tantau, T. User Guide to the Beamer Class, <u>http://latex-beamer.sourceforge.net</u>.
- 8. Oetiker, T. The Not So Short Introduction to LATEX2E, https://tobi.oetiker.ch/lshort/lshort.pdf.

Course	Course Name: Numerical MethodsCourse Code:						
No: 16					SBSMAT 0	1 02 02 GEC	2124
Batch:	Programme: M.Sc.	Semester:	L	Т	Р	Credits	Contact Hrs per Week:
2021-2023	Mathematics	Π					4
			2	1	2	4	Total Hours: 60
Total Evaluation Marks:		Examination Duration: 3 hours					
	Marks Marks	Pre-requisit	e of course: N	il			
Course	The rapid growt	h of science a	nd technology	during last	t few decades	has made a	tremendous
Objective	The rapid growth of science and technology during last few decades has made a tremendouc change in the nature of various mathematical problems. It is very difficult and almoos impossible to get analytical solutions in case of many of these problems. These shortcoming of analytical solutions lead us to various numerical techniques developed for different types of mathematical problems seem to be an excellent option. The course objective is to acquain the students with a wide range of numerical methods to solve algebraic and transcendent equations, linear system of equations, interpolation and curve fitting problems, numerical integration, initial and boundary value problems, etc.					ortcomings ent types of acquaint the nscendental	

Course	After completing this course, student is expected to learn the following:							
Outcomes:	CO1: Overview the errors in computation and their measurements							
	CO2: Apply numerical techniques to obtain approximate solutions to otherwise intractable mathematical problems							
	CO3: Learn numerical technique to find the solutions of nonlinear equations, system of linear equations, interpolation problems, numerical differentiations and integration, Initial and boundary value problems							
	CO4: Familiarized the students with convergence, advantages and limitations of these numerical techniques							

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1, 2, 3, 4]	16
	Errors in approximation, absolute, relative and percentage errors, round-off error.	
	Solution of algebraic and transcendental equations: bisection method, Regula Falsi	
	method, Secant method, method of iteration, Newton Raphson method, order of	

	convergence. Systems of simultaneous equations: Gauss elimination method,	
	Gauss Jordon method, LU decomposition method, Iterative methods: Jacobi	
	method and Gauss-Seidel method.	
II	[Course Outcome (s) No.: 2, 3, 4]	14
	Finite differences, Interpolation techniques for equal intervals-Newton forward and	
	backward, Gauss forward, Gauss Backward, Stirling, Bessel formulae.	
	Interpolation with unequal intervals-Newton's divided difference method,	
	Lagrange method. Hermite interpolation, Power method for eigenvalue problem.	
III	[Course Outcome (s) No. : 2, 3, 4]	16
	Numerical differentiation using Newton forward and backward formulae.	
	Numerical integration: Newton-Cotes formulas, trapezoidal rule, Simpson rule,	
	Gauss-Legendre, Gauss-Chebyshev formulas, Romberg's integration, Curve	
	fitting: straight line fitting, parabolic curve fitting, fitting of exponential curve,	
	fitting of other curves. Cubic splines	
IV	[Course Outcome (s) No.: 2, 3, 4]	14
	Solution of ordinary differential equations: Taylor series method, Picard's method,	
	Euler method, Euler modified method, Runge-Kutta methods, Milne's and	
	Adam's predictor and corrector methods. Finite difference method for boundary	
	value problems.	

Suggested Readings:

- Gupta, R. K. Numerical Methods: Fundamentals and Applications. 1st edition, Cambridge Universi Press, 2019.
- 2. Thangaraj, P. Computer Oriented Numerical Methods. PHI Learning Pvt. Ltd, 2013.
- 3. Jain, M. K., Iyengar, S. R. K. and Jain, R. K. *Numerical Methods for Scientific & Engineering Computation*. New Age International, 2012.
- 4. Burden R.L. and Faires J. D. Numerical Analysis. 9th Edition, Cengage Learning, 2011.
- 5. Chapra, S. C. and Canale, R. P. *Numerical Methods for Engineers*. McGraw Hill, International Edition, 1998.
- 6. Mathews, J. H. *Numerical Methods for Mathematics, Science and Engineering*. Prentice- Hall, International Editions, 1992.

Course	Course Name	: Discrete Ma	thematics		Course Coo	le:	
No: 17					SBSMAT 0	1 02 03 GEC	3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: II	L 3	T	P 0	Credits 4	Contact Hrs per Week: 4 Total
100	ation Marks: Marks	Examinatio Pre-requisit			3 hours		Hours: 60
	Marks						
Course Objective	algebra and gr	aph theory, we thods in su	vith a sense of bsequent co	of some its n purses in th	with the fundamenodern applicat nodern applicat e design and puter systems.	ions. They w	ill be able to
Course Outcomes:	CO1: Underst Hasse diagram CO2: Learn t Boolean functi	and the conce , function and he basic con- on e the basic cor	epts of Mathe l Pigeon hole cepts of Bo	ematical Log e principle olean algebra	earn the followi fic: Statement a a, lattice, logic graphs, and we	and notations,	relations of

	CO4: Use the properties of trees to find a minimal spanning tree for a given weighted graph			
	and understand Eulerian and Hamiltonian graphs			
COURSE SYLLABUS				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1]	15
	Mathematical Logic: Statement and notations, proposition and logic operations,	
	connectives(conjunction, disjunction, negation), statement formulas and truth	
	tables, propositions generated by set, equivalence of formulas and implication	
	laws of logic, mathematical systems, propositions over a universe, principal of	
	mathematical induction, variables, quantifiers.	
II	[Course Outcome (s) No. : 2]	15
	Relation and Function: Binary relations, properties of binary relation in a set,	
	equivalence relations, composition of binary relations, partial ordering and	
	partial order set, Hasse diagram, function and Pigeon hole principle, recursion	
	definition, many faces of recursion, recurrence relations, common recurrence	

	relations, generating functions and their solutions.	
III	[Course Outcome (s) No. : 3] Boolean algebra: Posets, lattice and basic properties of Boolean algebraic, principle of duality, distributive and complemented lattices, uniqueness of finite Boolean algebra, Boolean functions and Boolean expressions, normal forms of Boolean expression and simplifications of Boolean expressions, basic circuits and theorems, logical gates and relations of Boolean function.	15
IV	[Course Outcome (s) No. : 4] Graph theory: Basic terminology of graph theory, paths, circuits, graph connectivity, Eulerian paths, multigraphs, weighted graphs. Trees, spanning trees, binary trees, rooted trees, planar graphs, Eulers theorem. The Konigsberg bridge problem and Eulerian graphs, Hamiltonian graphs.	15
Suggested H	Readings:	L
1. Ram	, B. Discrete Mathematics, Pearson Education, 2012.	
 Khai Lips 	en, K. H. <i>Discrete Mathematics and Its Applications</i> . 7 th edition, Tata McGraw Hill, nna, V. K. <i>Lattices and Boolean Algebras</i> . PHI Publication, 2004. chutz, S., Lipson, M.L. and Patil, V.H. <i>Discrete Mathematics</i> . Schaum's Outline Graw-Hill Education, 2006.	
5. Liu,	C. L. Elements of Discrete Mathematics. Tata McGraw Hill, 2000.	
	nbley, J. P. and Manohar, R. A First Course in Discrete Structure with applications nce. Tata McGraw Hill, 1999.	to Computer

Course	Course Name	: Wavelet A	nalysis		Course Code:			
No: 18					SBSMAT (01 02 01 DCE	C 3104	
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4	
			3	1	0	4	Total Hours: 60	
	ation Marks:	Examinatio	on Duration:	3	hours		1	
100								
	Marks Marks	Pre-requisite of course: Nil						
Course	The course ain	n is to introdu	ice a flexible sy	stem which	provide stable	e reconstructio	on and	
Objective		ctions (signals) and the construction of variety of orthonormal bases by						
	applying opera	tors on a sing	gle wavelet fun	ction.				
Course	After completi	ng this cours	e, student is exp	pected to lea	orn the followi	ng:		
Outcomes:	_	-		-		-		
	CO1: Underst	and the appro	oximation of fu	nctions (sigr	nals) by frame	theory.		
	CO2: Use the	applications	of frames in sta	ble analysis	and decompo	sitions of fund	ctions.	
	CO3: Learn th	e application	s of wavelets ir	the constru	uction of ortho	normal bases	hv	
	wavelets.						09	
	CO4: Analyse	e different ty	pes of transform	ns in term of	f operators.			
			COURSE SY	LLABUS				
NOTE:								

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No.: 1]	15
	Review of inner product spaces, orthonormal systems, frames in C ⁿ , frames	
	algorithms, frames and Bessel sequences in infinite dimensional Hilbert	
	spaces, frame sequence, the Gram matrix associated with Bessel sequences.	
II	[Course Outcome (s) No. : 2]	15
	Frames and operators, characterization of frames, dual frames, tight frames.	
	Riesz bases, frames versus Riesz bases, conditions for a frame being a Riesz	
	basis, frames containing a Riesz basis, perturbation of frames.	
III	[Course Outcome (s) No.: 3]	15
	Wavelets, Haar wavelets, basic properties of the Haar scaling function, Haar	
	decomposition and reconstruction algorithms, the Daubechies wavelets,	
	wavelet bases, scaling function. multire solution analysis (MRA),	
	construction of wavelets from MRA.	
IV	[Course Outcome (s) No.: 4]	15
	Windowed Fourier transform (WFT), continuous Fourier transform (CFT),	
	continuous wavelet transform (CWT), comparison between CFT and CWT,	
	continuous wavelet transform as an operator, inversion formula for	
	continuous wavelet transform.	

Suggested Readings:

- 1. Boggess, A. and Narcowich, F.J. *A First Course in Wavelets and Fourier Analysis*. John Wiley & amp; Sons, 2010.
- 2. Mallat, S. A Wavelet Tour of Signal Processing. Academic Press, 2009.
- Han, D., Kornelson, K., Larson, D. and Weber, E. *Frames for Undergraduates*, Student Math. Lib (AMS) Vol. 40, 2007.
- 4. Christensen, O. An Introduction to Frames and Riesz Bases. Birkhauser, 2003.
- 5. Harnendez, E. and Weiss, G. A First Course on Wavelets, CRC Press, 1996.

Course	Course Name: Object Oriented Programming With C++Course Code:						
No: 19					SBSMA	AT 01 02 02 I	DCEC 2124
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	P	Credits	Contact Hrs per Week: 5
			2	1	2	4	Total Hours: 75
Total Evalua	ation Marks:	Examination I	Duration:	3 hou	rs		
	Marks Marks	Pre-requisite o	of course: Prog	ramming in	С		
Course	After familiarizi	ing the students v	with problem so	lving through	n C-progra	amming, this	course aims
Objective	to give exposure	e to basic and adv	vanced concept	s of Object-O	Driented F	rogramming	(OOP). The
	objective of course is to develop programming skills of students, using object oriented programming concepts, learn the concept of class and object using C++ and develop classes for simple applications.						
Course	After completin	g this course, stud	lent is expected	l to learn the	following	:	
Outcomes:	CO1: Identify in features	mportance of OO	P and able to di	ifferentiate be	etween str	uctured orien	ted and OOP
	CO2: Develop	simple C++ progr	ams and compi	ling and exec	cuting in d	lifferent envir	onment

CO3: Develop programs using functions, objects and classes

CO4: Interprets the concept of constructors and destructors. Operator overloading and type conversions. Inheritance and polymorphism concepts of OOP

CO5: Acquire knowledge of stream, i/o console, and file handling

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No.: 1,2]	20
	Basic concepts of Object-Oriented Programming (OOP). Advantages and	
	applications of OOP. Object-oriented languages. Introduction to C++. Structure of	
	a C++ program. Creating the source files. Compiling and linking. C++	
	programming basics: input/output, data types, operators, expressions, control	
	structures, library functions.	
II	[Course Outcome (s) No. : 1, 2, 3]	18
	Functions in C++ : Passing arguments to and returning values from functions,	
	inline functions, default arguments, function overloading. Classes and objects:	
	Specifying and using class and object, arrays within a class, arrays of objects,	
	object as a function arguments, friendly functions, pointers to members.	

III	[Course Outcome (s) No. : 1, 2, 4]	19
	Constructors and destructors. Operator overloading and type conversions.	
	Inheritance: Derived class and their constructs, Overriding member functions, class	
	hierarchies, public and private inheritance levels. Polymorphism, pointers to	
	objects, this pointer, pointers to derived classes, virtual functions.	
IV	[Course Outcome (s) No. : 1, 2, 5]	18
	Streams, stream classes, unformatted i/o operations, formatted console i/o	
	operations, managing output with manipulators. Classes for file stream operations,	
	opening and closing a file. File pointers and their manipulations, random access.	
	Error handling during file operations, command-line arguments. Exceptional	
	handling.	
Suggested H	Readings:	
1	. Yashavant, P. K. Let Us C++. BPB Publication, 2020.	
2	2. Balagrusamy, E. Object Oriented Programming with C ++. 2 nd edition, Tata McGraw	Hill Pub.
	Co, 2013.	
3	B. Lafore, R. Object Oriented Programming in C++. 4 th edition, Pearson, 2008.	
2	4. Gottfried, B. S. Object Oriented Programming using C++. Schaum's Outline Series,	Tata
	McGraw Hill Pub. Co., 2000.	
4	5. Barakaki, J. N. Object Oriented Programming using C++. Prentice Hall of India, 199	96.

Course	Course Name	: Information 7	Theory		Course Code:			
No: 20					SBSMAT 0	1 02 03 DCE0	C 3104	
Batch:	Programme:	Semester:	L	T	Р	Credits	Contact Hrs per	
2021-2023	M.Sc. Mathematics	II					Week: 4	
			3	1	0	4	Total Hours: 60	
Total Evalu 100	ation Marks:	Examination	Duration:	3	3 hours			
	Marks Marks The objective This course fur		s to introduce	e basic and a	dvanced topics		-	
Course	channels and the channels and the complete			spected to lea	arn the followi	<u>ا</u> م.		
Outcomes :							-	
	CO3: Underst	and about discr	ete channels	and their pro	operties with a	oplications.		
	CO4: Underst				properties wit	h applications	5.	
		(COURSE SY	YLLABUS				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No.: 1]	15
	Measure of information - axioms for a measure of uncertainty, the Shannon	
	entropy and its properties. joint and conditional entropies, transformation and its	
	properties, axiomatic characterization of the Shannon entropy due to Shannon	
	and Fadeev.	
II	[Course Outcome (s) No.: 2]	15
	Noiseless coding - ingredients of noiseless coding problem, uniquely	
	decipherable codes, necessary and sufficient condition for the existence of	
	instantaneous codes, construction of optimal codes.	
III	[Course Outcome (s) No.: 3]	15
	Discrete memory less channel - classification of channels, information processed	
	by a channel, calculation of channel capacity, decoding schemes the ideal	
	observer, the fundamental theorem of information theory and its strong and weak	
	converses.	

IV	[Course Outcome (s) No.: 4]	15
	Continuous channels - the time-discrete Gaussian channel, uncertainty of an	
	absolutely continuous random variable, the converse to the coding theorem for	
	time-discrete Gaussian channel, the time-continuous Gaussian channel, band-	
	limited channels.	
Suggested H	Readings:	
1. Ash,	R. B. Information Theory. Courier Corporation, 2012.	
2. Reza	, F.M. An Introduction to Information Theory. Courier Corporation, 2012.	

- 3. Hankerson, H. D., Harris, G. A. and Johnson, P. D. *Introduction to Information Theory and Data Compression*. Chapman and Hall/CRC, 2nd edition, 2003.
- 4. Aczel, J. and Daroczy, Z. On Measures of Information and their Characterizations. Academic Press, New York, 1975.

Course	Course Name:	Operations R	esearch		Course C	ode:			
No: 21					SBSMAT	01 02 04 DCI	EC 3104		
Batch:	Programme: M.Sc.	Semester:	L	T	Р	Credits	Contact Hrs per Week:		
2021-2023	Mathematics	II					4		
			3	1	0	4	Total Hours: 60		
Total Evalu	ation Marks:	Examinatio	on Duration:		3 hours				
100									
	Marks Marks	Pre-requisite of course: Nil							
Course	This course is d	lesigned to int	troduce basic	optimization	n techniques	in order to ge	t best results		
Objective		-		-	-	-			
	from a set of several possible solutions of different problems viz. linear programming problems, transportation problem, assignment problem and unconstrained and constrained problems etc.						constrained		
Course	After completin	g this course,	student is ex	pected to lea	rn the follow	ving:			
Outcomes :	CO1: Understat	O1: Understand linear programming problems and to find their solutions by using different							
	CO2: Find opti	mal solution of	of transportati	ion problems	s and assignr	nent problems			
	CO3: Understa	nd and solve o	different queu	iing models.					

CO4: Find optimal solution of linear programming model using Game Theory. Also learn about sequencing problems.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No.: 1]	15
	Operations research: origin, definition and scope. linear programming:	
	formulation and solution of linear programming problems by graphical, simplex	
	methods, Big-M and two phase methods, degeneracy, duality in linear	
	programming, sensitivity analysis.	
II	[Course Outcome (s) No.: 2]	15
	Transportation problems: basic feasible solutions, optimum solution by stepping	
	stone and modified distribution methods, unbalanced and degenerate problems,	
	transhipment problem. Assignment problems: solution by Hungarian method,	
	unbalanced problem, case of maximization, travelling salesman and crew	

	assignment problems.	
III	[Course Outcome (s) No.: 3]	15
	Queuing models: basic components of a queuing system, general birth-death	
	equations, steady-state solution of Markovian queuing models with single and	
	multiple servers (M/M/1. M/M/C, M/M/1/k, M/M/C/k)	
IV	[Course Outcome (s) No.: 4]	15
	Game theory: two persons zero sum game, game with saddle points, rule of	
	dominance; algebraic, graphical and linear programming, concept of mixed	
	strategy. sequencing problems: processing of n jobs through 2 machines, n jobs	
	through 3 machines, 2 jobs through m machines, n jobs through m machines.	
Suggeste	ed Readings:	
1.	. Sharma, S. D. Operation Research, Kedar Nath Ram Nath Publications, 2012.	
2.	. Swarup, K. and Gupta, P.K. Operations Research. S. Chand publisher, 2010.	
3.	. Taha, H. A. Operation Research: An Introduction.9th edition, Pearson, 2010.	
4.	. Gupta, P.K. and Hira, D.S. Introduction to Operations Research, S. Chand & Co. 2008	
5.	. Sharma, J. K., Mathematical Model in Operation Research, Tata McGraw Hill, 1989.	

Course	Course Name:	Integral Equat	ions and Calcul	us of	Course Co	de:	
No: 22	Variation				SBSMAT (01 03 01 C 310	04
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: III	L	T	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu	ation Marks:	Examination	Duration:	3 ho	ours		
	Marks Marks	Pre-requisit	e of course: Nil	1			
Course	In this course w	ve study in deta	il about integral	equations a	nd calculus	of variations	Integral
Objective		•	U	•			U
S SJeeu re	equations find numerous applications in real life physical problems. The main objective of the course is to make the learner familiarize with resolvent kernel, successive approximation, solution of homogeneous Fredholm integral equation for solving integral equations and variational problems. Differential equations can be studied for their solutions by transforming them into integro-differential equations using Laplace transform.						ation, and

SEMESTER – III

Course	After completing this course,	student is expected to learn	the following:
--------	-------------------------------	------------------------------	----------------

Outcomes CO1: Use the concept of different kernels and techniques for solving various kinds of integral equations.

CO2: Find the solutions of Volterra integral equations using Neumann series method.

CO3: Understand the relation between differential and integral equations.

CO4: Learn about the formulation of variational problems, the variation of a functional and its properties, extremum of functional, sufficient condition for an extremum.

COURSE SYLLABUS

NOTE:

:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Linear integral equations: Volterra integral equations, Fredholm integral equations,	
	some basic identities, types of kernels: symmetric kernel, separable kernel, iterated	
	kernel, resolvent kernel.	
	Initial value problems reduced to Volterra integral equations, solution of Volterra	
	integral equation using: resolvent kernel, successive approximation, neumann	

	series method.	
II	[Course Outcome (s) No. : 2] Boundary value problems reduced to Fredholm integral equations, solution of Fredholm integral equations using separable kernel, resolvent kernel,methods of successive approximation and successive substitution to solve Fredholm equations of second kind, solution of homogeneous Fredholm integral equation, eigen values, eigen vectors.	15
III	[Course Outcome (s) No.:3] Integral transforms for solving integral equations, basic properties of Laplace transforms, solution of Abel's equation using Laplace transform, application of Laplace transform to the solution of Volterra integral equations with convolution type kernels, solution of integro-differential equations using Laplace transform. Fourier Transform, Fourier sine and cosine transforms.	15
IV	[Course Outcome (s) No. : 4] Extrema of functionals: Euler's equation, sufficient conditions for the extremum of a functional, extension of the variational methods, Brachistochrone problem, geodesics.	15
Suggested	Readings:	
2.	Wazwaz, A. M. <i>A First Course in Integral Equations</i> . 2 nd edition World Scientific Publ Co. 2015. Kanwal, R. P. <i>Linear Integral Equation. Theory and Techniques</i> . Academic Press, 2014 Gelfand, I. M. and Fomin, S. V. <i>Calculus of Variations</i> . Courier Corporation, 2012.	
	Hildebrand, F. B. Method of Applied Mathematics, Courier Corporation, 2012.	
4.		

Course	Course Name:	Functional An	alysis		Course C	ode:		
No: 23					SBSMAT	01 03 02 C 3	104	
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact	
							Hrs per	
	M.Sc.						Week:	
2021-2023	Mathematics	III					4	
			3	1	0	4	Total	
							Hours: 60	
	ation Marks:	Examination	n Duration	1:	3 hours			
100								
CIE: 30	Marks	D	e	NT'1				
CIL: 50	iviulit()	Pre-requisit	e of course	e: N11				
TEE: 70	Marks							
Course	To familiarize w	vith the basic to	ools of Fun	ctional Ana	lysis involvi	ng normed spa	aces, Banach	
Objective	spaces and Hilb	ert spaces, thei	r propertie	s dependent	on the dime	nsion and the	bounded	
	linear operators	from one spac	e to anothe	r.				
Course	After completing	g this course, s	student is e	xpected to 1	earn the follo	owing:		
Outcomes:	CO1: Verify the	e requirements	of a norm.	completene	ess with resp	ect to a norm.	relation	
		e requirements of a norm, completeness with respect to a norm, relation extness and dimension of a space, check boundedness of a linear operator and						
	relate to continu			-			-	
	spaces.	<i>,,</i>		j	0	, p		
	CO2: Distingui		1	es and Hilbe	ert spaces, de	compose a H	ilbert space in	
	terms of orthogo	onal compleme	ents.					

CO3: Check totality of orthonormal sets and sequences, represent a bounded linear functional in terms of inner product, classify operators into self-adjoint, unitary and normal operators.

CO4: Extend a linear functional under suitable conditions, compute adjoint of operators, check reflexivity of a space, ability to apply uniform boundedness theorem, open mapping theorem and closed graph theorem, check the convergence of operators and functional and weak and strong convergence of sequences.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1,2]	15
	Metric Space, sequences, Cauchy sequences, complete metric spaces and	
	examples, Baire's theorem. Cantor intersection theorem and Banach fixed	
	point principle, normed linear spaces. Banach spaces, examples of Banach	
	spaces and subspaces.	
II	[Course Outcome (s) No.: 2]	15
	Continuity of linear maps, Equivalent norms, normed spaces of bounded	
	linear maps, bounded linear functionals, dual spaces of l^p , \mathbb{R}^n and reflexivity,	
	Hilbert spaces and examples, orthogonality, orthonormal sets, Bessel's	

	inequality, Parsevals's theorem, the conjugate space of a Hilbert space.	
III	[Course Outcome (s) No. :3]	15
l	Representation of bounded functional on Hilbert space, adjoint operators,	
	self-adjoint operators, normal and unitary operators, weak and strong	
	convergence, completely continuous operators.	
IV	[Course Outcome (s) No. :4]	15
	Hahn-Banach theorem and its applications, uniform boundedness principle,	
	open mapping theorem, projections on Banach spaces, closed graph theorem.	
Suggested	Readings:	
1.	Simmons, G. F. Introduction to Topology and Modern Analysis. McGraw-Hill Pv	t. Ltd. 2016.
2.	Bachman, G. and Narici, L. Functional Analysis. Courier Corporation, 2012.	
3.	Conway, J. B. A Course in Functional Analysis. Springer, 2010.	
4.	Kreyszig, E. Introductory Functional Analysis with Applications. John Wiley, 200)7.
5.	Royden, H. L. Real Analysis. MacMillan Publishing Co., Inc., New York, 4th edit	ion, 1993.

Course	Course Name	: Mathematical St	tatistics	Course Code:				
No: 24				SBSMAT 01 03 03 C 3104				
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4	
			3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks:	Examination D	uration:	3 hours				
TEE: 70 Course Objective	various types of	e course is to enab of probability distr	ributions and	testing of hypor	thesis prot	olems. It aim		
	various types of	of probability dist	ributions and	testing of hypor	thesis prot	olems. It aim		
Course Outcomes:	 students with standard concepts of statistical techniques and their utilization. After completing this course, student is expected to learn the following: CO1: Explore the basic ideas about measures of central tendency, dispersion, sk ewness and kurtosis with their applications and basic idea about probability theory. CO2: Demonstrate the understanding of random variable, expectation, variance and some discrete distributions. CO3: Explain the different types of continuous distributions and their utilization. CO4: Deal with formulation of hypotheses as per situations and their testing. 							
		CO	DURSE SYL	LABUS				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.
 Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No.: 1]	15
	Measures of central tendency and dispersion, moments, measures of skewness and	
	kurtosis, correlation and regression. axiomatic approach to the theory of	
	probability, sample space, additive and multiplicative law of probability,	
	conditional probability. Definition and properties of random variables, discrete	
	and continuous random variables, probability mass and density functions,	
	distribution function. Concepts of bivariate random variables.	
II	[Course Outcome (s) No.:2]	15
	Mathematical expectation: Definition and its properties. variance, covariance,	
	moment generating function- definitions and their properties. Discrete	
	distributions: Binomial, Poisson and geometric distributions with their properties.	
III	[Course Outcome (s) No.: 3]	15
	Continuous distributions: uniform, exponential, gamma and normal distributions	
	with their properties, Central Limit Theorem (Only statement).	

IV	[Course Outcome (s) No.: 4]	15
	Statistical estimation, Testing of hypothesis: Null and alternative hypotheses,	
	simple and composite hypotheses, two types of errors, t, F and Chi-Square as	
	sampling distribution and applications.	
Suggested	Readings:	
1.	Meyer, P. L. Introductory Probability and Statistical Applications. 2nd edition, Addiso Publishing Company, 2017.	on-Wesley
2.	Gupta, S. C. and Kapoor, V. K. Fundamentals of Mathematical Statistics. Sultan Cl	hand & Sons,
	2014.	
3.	Mood, A. M., Graybill, F. A. and Boes, D. C. Introduction to the Theory of St	atistics, Tata
	McGraw Hill, 2014.	
4.	Spiegel, M. R., Schiller, J. J. and Srinivasan, R. A. Probability and Statistics. Tata M	McGraw-Hill,
	2014.	
5	Baisnab, A. P. and Jas, M. Element of Probability and Statistics, Tata McGraw Hill, 1	993.

Course	Course Name:	Applied Discre	ete Mathem	atics	Course Code	Course Code:				
No: 26					SBSMAT 01 03 01 DCEC 3104					
Batch:	Programme: M.Sc.	Semester:	L	T	Р	Credits	Contact Hrs per Week:			
2021-2023	Mathematics	III					4			
			3	1	0	4	Total Hours: 60			
Total Evalu 100	ation Marks:	Examination	Duration:	:	3 hours					
CIE: 30	Marks	Pre-requisite	e of course:	: Nil						
TEE: 70	Marks									
Course	The main object									
Objective	graph theory and studying for the	•		on of Boolea	an algebra, bipa	rtite graphs an	d trees and			
Course	After completin	g this course, s	tudent is ex	pected to le	arn the followin	g:				
Outcomes :	CO1: Analyze l	ogical proposit	tions using	truth tables.						
	CO2: Understan	nd the concept	of lattice.							
	CO3: Learn abo	out the applicat	ions of Boc	lean algebra	a in switching th	eory.				
	CO4: Use the c	oncept of plana	ur graphs, tr	ees and stud	ly for their prop	erties.				

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Formal Logic: Statements, proposition, symbolic representation and tautologies,	
	quantifiers, proposition logic.	
II	[Course Outcome (s) No. : 2]	15
	Lattices: Lattices as partially ordered sets, their properties, lattices as algebraic	
	systems, some special lattices, e.g., complete, complemented and distributive	
	lattices, some special lattices e.g., bounded, complemented & distributive lattices.	
III	[Course Outcome (s) No. : 3]	15
	Boolean Algebra: Boolean algebra as lattices, various Boolean identities, the	
	switching algebra example, join - irreducible elements, atoms and minterms,	
	Boolean Forms and their equivalence, minterm Boolean forms, sum of products	
	canonical forms, minimization of Boolean functions, applications of Boolean	
	algebra to switching theory (using AND, OR and NOT gates).	

IV	[Course Outcome (s) No. : 4]	15
	Graph Theory: Definition of graphs, paths, circuits, cycles and subgraphs, induced subgraphs, degree of a vertex, connectivity, planar graphs and their properties, Euler's formula for connected planar graph, complete and complete bipartite graphs. Trees.	
Suggestea	Readings:	
1.	Tremblay, J.P. and Manohar, R. Discrete Mathematical Structures with Applications to	Computer
	Science. Ist edition McGraw Hill Book Co., 2017.	
2.	Lepschutz, S. and Lipson, M. Linear Algebra. 5th edition, Tata McGraw Hill 2012.	
3.	Ram, B. Discrete Mathematics. Pearson Education, 2012.	
4.	Kenneth H. R. Discrete Mathematics and Its Applications, 7th edition, Tata McGraw H	ill, 2011.
5.	Liu, C. L. Elements of Discrete Mathematics. Tata McGraw Hill, 2000.	

Course	Course Name:	Theory of Ela	sticity		Course Code:			
No: 27					SBSMAT (01 03 02 DCE	C 3104	
Batch:	Programme: M.Sc.	Semester:	L	T	P	Credits	Contact Hrs per Week:	
2021-2023	Mathematics	III					4	
			3	1	0	4	Total Hours: 60	
Total Evalu 100	ation Marks:	Examinatio	on Duratio)n:	3 hours			
CIE: 30	Marks	Pre-requisi	te of cour	se: Nil				
TEE: 70	Marks							
Course	This course air	ms to familia	rize the s	tudents wit	h tensors and	l the principl	es and basic	
Objective	equations of ela Cartesian and p	-		expose the	students to tw	o dimensiona	l problems in	
Course	After completin	g this course,	student is e	expected to	learn the follo	wing:		
Outcomes:	CO1: Use the i	indicial notatio	n and kno	wledge of to	ensor			
	CO2: Analyse s	strain, stress ar	nd deforma	ation				
	CO3: Understan	nd the basic p	rinciples a	nd field equ	ations of linea	r elastic solids	5	
	CO4: Formulat	e the solution	strategies o	of various tv	vo dimensiona	l problems		
	CO5: Analyse t	he propagation	n of surfac	e waves				
		C	DURSE S	YLLABUS				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1, 2]	15
	Cartesian tensor: Coordinate transformation, Cartesian tensor of different order,	
	sum or difference and product of two tensors. contraction theorem, quotient	
	law, symmetric & skew symmetric tensors, Kronecker tensor, alternate tensor	
	and relation between them, scalar invariant of second order tensor, eigen values	
	& vectors of a symmetric second order tensor, gradient, divergence & curl of a	
	tensor field.	
	Analysis of strain: affine transformations, infinitesimal affine transformation,	
	geometrical interpretation of the components of strain.	
II	[Course Outcome (s) No.: 2]	15
	Strain quadric of Cauchy, principal strains and invariants, general infinitesimal	
	deformation. Saint- Venant's equations of compatibility.	
	Analysis of stress: stress tensor, equations of equilibrium, transformation of co-	
	ordinates, stress quadric of Cauchy, principal stress and invariants, maximum	
	normal and shear stresses.	

III	[Course Outcome (s) No.: 3]	15
	Equations of elasticity: Generalized Hooke's law, homogeneous isotropic	
	media, elastic moduli for isotropic media, equilibrium and dynamic equations	
	for an isotropic elastic solid, strain energy function and its connection with	
	Hooke's law, Beltrami-Michell compatibility equations.	
IV	[Course Outcome (s) No.: 4,5]	15
	Two-dimensional problems: Plane strain, plane stress, generalized plane stress,	
	Airy's stress function, general solution of bi-harmonic equation, stresses and	
	displacements in terms of complex potentials, propagation of waves in an	
	isotropic elastic solid medium, waves of dilation and distortion, elastic surface	
	waves such as Rayleigh and Love waves.	
Suggested H	Readings:	
1. Sado	I, M. H. Elasticity: Theory, Applications and Numerics. Academic Press, 2014.	
2. Love 2013	e, A. E. H. A Treatise on Mathematical Theory of Elasticity. Cambridge [Eng.] Univ 3.	versity Press,
3. Time	oshenko, S. P. and Goodier, J. N. Theory of Elasticity. New York McGraw-Hill, 20	10.
4. Nara	ayan, S. Text Book of Cartesian Tensors. S. Chand & Co., 1968.	
5. Soko	olnikoff, I. S. Mathematical Theory of Elasticity. McGraw-Hill Inc, 2 nd edition, 1950	б.

Course	Course Name: Algebra –IICourse Code:					Code:				
No: 28					SBSMAT 01 03 03 DCEC 310					
Batch:	Programme: M.Sc.	Semester:	L	T	Р	Credits	Contact Hrs per Week:			
2021-2023	Mathematics	III					4			
			3	1	0	4	Total Hours: 60			
Total Evalua	ation Marks:	Examination	Duration:	3	hours					
100										
CIE: 30 Marks		Pre-requisite of course: Nil								
TEE: 70	Marks									
Course	The main object	ive of this cours	se is to enco	ourage studen	ts to devel	op a working	g knowledge			
Objective	of the central id	leas of Linear A	Algebra like	linear transf	ormations,	Vector space	ce, Modules,			
	canonical forms	and Field Theo	ry like field	extensions, s	plitting fie	ld and Galoi	is theory.			
Course	After completin	g this course, stu	udent is exp	ected to learn	the follow	ving:				
Outcomes:	CO1: Write abs	tract mathemati	cal proofs in	a clear and l	logical mar	nner				
	CO2: Apply the	eorems to solve	problems in	number theo	ory and the	ory of poly	nomials over			
	a field									
	CO3: Demonstr	ate ability to the	ink critically	by interpret	ing theorer	ns and relati	ing results to			
	problems in othe	er mathematical	disciplines							
	CO4: Think cri	tically by recog	nizing patte	erns and prine	ciples of al	lgebra and r	elating them			

to the number system

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit				
		Each Unit			
Ι	[Course Outcome (s) No.:1] Field, structure of finite fields, finite, algebraic, and transcendental extensions, splitting fields, simple and normal extensions, perfect fields, primitive elements, algebraically closed fields.	15			
II	[Course Outcome (s) No. : 2] Automorphisms of extensions. Galois extensions, fundamental theorem of Galois theory, solution of polynomials by radicals, Galois group over the rationals.	15			

III	[Course Outcome (s) No. : 3]	15
	Vector spaces, modules, direct products and direct sums, quotients and	
	monomorphisms of modules, modules over PIDs and applications, various	
	canonical forms.	
IV	[Course Outcome (s) No. : 4]	15
	Simple and semisimple modules, semisimple rings, Wedderburn-Artin	
	structure theory.	
Suggeste	d Readings:	
1 т	ang S. Alashug Springer 2012	

- 1. Lang, S. Algebra. Springer, 2012.
- 2. Herstein, I. N. Topics in Algebra. Wiley Eastern Ltd., New Delhi, 2006.
- 3. Dummit, D.S. and Foote, R.M.Abstract Algebra (3rd revised edition). Wiley, 2003.
- Bhattacharya, P. B. Jain, S. K. and Nagpaul, S. R. Basic Abstract Algebra, 2ndedition. Cambridge University Press, 1997.
- 5. Anderson, F. W. and Fuller, K. R. *Rings and Categories of Modules*. Springer-Verlag New York, 1992.
- 6. Cohn, P. M. Algebra. John Wiley & Sons, Vols. I: 1982, Vols. II: 1989, Vols. III: 1991.

Course	Course Name:	Fluid Dynami	cs		Course Co	de:	
No: 29					SBSMAT 0	1 03 04 DCE	C 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	Т	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu	ation Marks:	Examinatio	on Duration	:	3 hours		
100							
	Marks Marks The objective of where the stude	nt will be able	to provide e to apply th	a treatment ne technique	es used in deri	ving a range	of important
	results and in re the fundamenta problems.	*	•		1		Ũ
Course	After completin	g this course,	student is ex	pected to le	earn the follow	ing:	
Outcomes: CO1: Understand the basic principles of fluid dynamic approach etc.				ics, such as La	grangian and	Eulerian	
	CO2: Use the c	oncept of stres	s in fluids v	with applicat	tions.		
	CO3: Analyse I	rrotational and	d rotational :	flows in flui	ids and some o	f their proper	ties
	CO4: Find anal	ytical solution	of Navier S	toke equation	on and solution	ns of some be	nchmark

	problems.	
	COURSE SYLLABUS	
NOTE:		
Eight questi	ons will be set, two from each of the UNIT. The candidates are required to attempt a	ny five
questions in	all selecting at least one question from each section. All questions carry equal marks	s. Unit I
will be taug	t via online mode.	
OR		
1. Ouestion	o. 1 has seven parts and students need to answer any four. Each part carries thr	ee and half
Marks.		
	o. 2 to 5 have three parts and student need to answer any two parts of each question	n Each part
		an anom pano
carries seven		
carries seven		
	marks	Hours of
carries seven Unit No.		Hours of
Unit No.	marks Content of Each Unit	Each Unit
	marks Content of Each Unit [Course Outcome (s) No.: 1]	
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density,	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1]	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density,	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian	Each Unit
Unit No.	Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility conditions, strain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation.	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility conditions, strain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation. [Course Outcome (s) No.: 2]	Each Unit
Unit No.	Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility conditions, strain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation. [Course Outcome (s) No.: 2] Stresses in Fluids: stress tensor, symmetry of stress tensor, transformation of	Each Unit
Unit No.	marks Content of Each Unit [Course Outcome (s) No.: 1] Concept of fluids, physical properties of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids, Eulerian and Lagrangian methods of description of flows, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility conditions, strain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation. [Course Outcome (s) No.: 2]	Each Unit

ess,
15.
on,
)]

Course	Course Name:	Fuzzy Set Theo	ory		Course C	Code:	
No: 30					SBSMAT	CEC 3104	
Batch:	Programme: M.Sc.	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4
2021-2023	Mathematics	III	3	1	0	4	Total Hours: 60
Total Evalu 100	ation Marks:	Examination	Duration	1:	3 hours		
	Marks Marks	Pre-requisite	e of course	e: Nil			
Course	The course aim	s to introduce st	udents to f	ùndamental	concepts in	fuzzy sets, f	fuzzy relations,
Objective	arithmetic opera	ations on fuzzy	sets, proba	bility theory	, fuzzy logi	c and its app	lications.
Course	After completin	g this course, st	udent is ex	spected to le	earn the follo	owing:	
Outcomes:	CO1: Construct appropriate fuzzy numbers corresponding to uncertain and inconsiste collected data.						and inconsistent
	CO2: Understa	nd the basic cor	cepts of t-	norms, t- co	onforms and	l operation of	f - cut interval.
	CO3: Use the trapezoidal fuzz	-			U	•	, operations of lications.
	CO4: Analyse	the Integration a	and differe	ntiation of f	uzzy functio	on product se	t, and
	understand the	basic concepts	of compo	sition of fuz	zy relation,	fuzzy graph	, projection and

cylindrical extension

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
I	[Course Outcome (s) No. : 1] Concepts of fuzzy set, standard operations of fuzzy set, fuzzy complement, fuzzy union, fuzzy intersection, other operations in fuzzy set, t- norms and t- conorms. Interval, fuzzy number, operation of interval, operation of - cut	15
	interval, examples of fuzzy number operation.	
Π	 [Course Outcome (s) No. : 2] Definition of triangular fuzzy number, operation of triangular fuzzy number, operation of general fuzzy numbers, approximation of triangular fuzzy number, operations of trapezoidal fuzzy number, bell shape fuzzy number, function with fuzzy constraint, propagation of fuzziness by crisp function, fuzzifying function of crisp variable, maximizing and minimizing set, 	15

	maximum value of crisp function.	
III	[Course Outcome (s) No. : 3]	15
	Integration and differentiation of fuzzy function product set, definition of	
	relation, characteristics of relation, representation methods of relations,	
	operations on relations, path and connectivity in graph, fundamental	
	properties, equivalence relation, compatibility relation, pre-order relation,	
	order relation, definition and examples of fuzzy relation, fuzzy matrix,	
	operations on fuzzy relation.	
IV	[Course Outcome (s) No. : 4]	15
	Composition of fuzzy relation, - cut of fuzzy relation, projection and	
	cylindrical extension, extension by relation, extension principle, extension	
	by fuzzy relation, fuzzy distance between fuzzy sets, graph and fuzzy graph,	
	fuzzy graph and fuzzy relation, - cut of fuzzy graph.	
Suggeste	d Readings:	
1. N	Iohan, C. An Introduction to Fuzzy Set Theory and Fuzzy Logic. Anshan Publishers,	2015.
2. L	ee, K. H. First Course on Fuzzy Theory and Applications. Springer International Ed	ition, 2005.
3. Y	en, J., Langari, R. Fuzzy Logic - Intelligence, Control and Information. Pearson Edu	ucation, 1999.
4. Z	immerman, H.J. Fuzzy Set Theory and its Applications. Allied Publishers Ltd., New	Dalh; 1001

Course	Course Name:	Differential G	ential Geometry Course Code:					
No: 32					SBSMAT 01 04 01 DCEC 3104			
Batch:	Programme: M.Sc.	Semester:	L	Т	Р	Credits	Contact Hrs per Week:	
2021-2023	Mathematics	IV					4	
			3	1	0	4	Total Hours:	
							60	
Total Evaluation Marks: 100		Examinatio	Examination Duration: 3 hours					
CIE: 30	Marks	Pre-requisi	te of course: 1	Nil				
TEE: 70	Marks							
Course Objective	In this course, students will be imparted knowledge to enable them to understand several concepts of Differential Geometry such as space curves, surfaces, curvatures, torsion, developables and geodesics.							
Course	After completin	g this course, s	student is expe	ected to learn th	e following	:		
Outcomes:	CO1: Learn abo	out the concept	ts of curvature	, torsion, involu	ites and evo	olutes.		
	CO2: Familiari coefficients.	ze with severa	l concepts of ta	angent plane, H	lelicoids, m	etric and dired	ction	
	CO3: Understa	nd the concept	s of developab	le surfaces.				

SEMESTER – IV

	CO4: Use the several notions of curvatures such as geodesic curvature and Gaussian	
	curvatures.	
	COURSE SYLLABUS	
NOTE:		
Eight questi	ons will be set, two from each of the UNIT. The candidates are required to attempt any	five
questions in	all selecting at least one question from each section. All questions carry equal marks. U	Jnit I
will be taug	nt via online mode.	
OR		
1. Question	no. 1 has seven parts and students need to answer any four. Each part carries three	and half
Marks.		
2. Question 1	o. 2 to 5 have three parts and student need to answer any two parts of each question.	Each part
carries seven	marks	
Unit No.	Content of Each Unit	Hours
		of Each
		Unit
I	[Course Outcome (s) No. : 1]	15
•	Curves with torsion: tangent, principal normal, curvature, binormal, torsion, Serret-	10
	Frenet formulae, locus of centre of spherical curvature, helix, involutes and	
	evolutes.	
	evolutes.	
TT		15
II	[Course Outcome (s) No. : 2]	15
II	[Course Outcome (s) No. : 2] Envelopes: surfaces, tangent plane, envelope, characteristics, edge of regression,	15
	[Course Outcome (s) No. : 2] Envelopes: surfaces, tangent plane, envelope, characteristics, edge of regression, developable surfaces, osculating, polar and rectifying developable.	
II	[Course Outcome (s) No. : 2] Envelopes: surfaces, tangent plane, envelope, characteristics, edge of regression, developable surfaces, osculating, polar and rectifying developable. [Course Outcome (s) No. : 3]	15
	[Course Outcome (s) No. : 2]Envelopes: surfaces, tangent plane, envelope, characteristics, edge of regression, developable surfaces, osculating, polar and rectifying developable.[Course Outcome (s) No. : 3]Curvilinear co-ordinates: first order magnitude, directions on a surface, second	
	[Course Outcome (s) No. : 2] Envelopes: surfaces, tangent plane, envelope, characteristics, edge of regression, developable surfaces, osculating, polar and rectifying developable. [Course Outcome (s) No. : 3]	

IV	[Course Outcome (s) No. : 4]	15
	Geodesics: geodesic property, equations of geodesics, torsion of a geodesic.	
	Bonnet's theorem, Joachimsthal's theorems, geodesic parallels, geodesic ellipses	
	and hyperbolas, Liouville surfaces.	
Suggested	Readings:	
1.	Weatherburn, C. E. Differential Geometry of Three Dimensions, Cambridge University	
	Press, 2016.	
2.	Graustein, W. C. Differential Geometry. Courier Corporation, 2012.	
3.	Wilmore T. J. An Introduction to Differential Geometry, Dover Publications Inc., 2012.	
4.	Pressley, A. Elementary Differential Geometry. Springer, 2002.	

Course	Course Name: Mathematical ModellingCourse Code:						
No: 33					SBSMAT	01 04 02 DC	EC 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L	T	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu	ation Marks: 100	Examination	Duration:	3	hours		
	Marks Marks	Pre-requisite	of course: N	Jil			
Course	The objectives of th	is course are to					
Objective	 Enab interj Make pract 	le students und preted. e students appre ical real-life pro p students with	erstand how a eciate the pow oblems.	ver and limit	ations of m	athematics in	
Course	After completing the	is course, stude	nt is expected	d to learn the	following:		
Outcomes:						ved in a	

CO3: Understand and apply the concept of mathematical modeling through difference equations in population dynamics, genetics and probability theory.

CO4: Apply the concept of mathematical modeling through graph theory.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of Each Unit
Ι	[Course Outcome (s) No.: 1] Simple situations requiring mathematical modelling, techniques of mathematical modelling, classifications, characteristics and limitations of mathematical models, some simple illustrations, mathematical modelling in population dynamics, mathematical modelling of epidemics through systems of ordinary differential equations of first order mathematical models in medicine, battles and international trade in terms of systems of ordinary differential equations.	15
Π	[Course Outcome (s) No.: 2] The need for mathematical modelling through difference equations, linear growth and decay models, non-linear growth and decay models, basic theory of linear difference equations with constant coefficients, mathematical modelling through difference equations in economics and finance.	15

III	[Course Outcome (s) No.: 3]	15
	Mathematical modelling through difference equations in population dynamics and	
	genetics, mathematical modelling through difference equations in probability theory,	
	miscellaneous examples of mathematical modelling through difference equations.	
IV	[Course Outcome (s) No.: 4]	15
	Situations that can be modelled through graphs, mathematical models in terms of	
	directed graphs mathematical models in terms of signed graphs, mathematical	
	models in terms of weighted graphs.	
Suggested I	Readings:	
1.]	Kapur J. N. Mathematical Modelling, 2 nd edition, New Age International, 2015.	
2. 1	Meerschaert, M. M. Mathematical Modelling. Academic Press, 2013.	
3.]	Rutherford, A. Mathematical Modelling Techniques. Courier Corporation, 2012.	
4. (Clive, L. D. Principles of Mathematical Modelling. Elsevier, 2004.	
5.]	Bender, E. A. An Introduction to Mathematical Modelling. Courier Corporation, 2000.	

Course	Course Name:	Advanced Nur	nerical Anal	ysis	Course Cod	e:	
No: 34					SBSMAT 01	04 03 DCEC	3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L	T	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu 100	ation Marks:	Examination	Duration:	3	hours		
	Marks Marks	Pre-requisito	e of course:	Numerical A	Analysis		
Course Objective	After familiariz this course aim is to acquaint th of algebraic an eigenvalue pro differential equa	s to give expose the students with d transcendent blems, and ma	sure to some h a wide ran al equations	advanced nu ge of advance , linear syste	merical metho ed numerical em of equation	ods. The cours methods to sol ons, difference	e objective ve systems equations,
Course Outcomes :	After completin CO1: Learn m nonlinear equat CO2: Solve biv	umerical techn	ique to find curve fitting	l the numerio	cal solutions	of system of	

CO3: Understand finite difference methods for numerical solutions of partial differential
equations especially heat, wave, Laplace and Poisson equations.
CO4: Familiarize the students with advantages and limitations of numerical techniques

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1, 2, 4]	15
	General iterative method for the system: $x = g(x)$ and its sufficient condition	
	for convergence. Chebyshev method, Newton-Raphson method. Successive	
	over relaxation (SOR) method for system of linear equations. Bivariate	
	interpolation, B-Spline interpolation and Bezier curves.	
II	[Course Outcome (s) No. : 2, 4]	15
	Review of finite difference operators, difference equations, order of difference	
	equation, degree of difference equation, solution of difference equations, use	
	of generating function in the solution of difference equation. Jacobi, Givens	
	and Householder methods real symmetric matrix	

III	[Course Outcome (s) No. : 3, 4]	14
	Numerical solutions of parabolic equations of second order in one space	
	variable -two and three levels explicit and implicit difference schemes,	
	truncation errors and stability. Numerical solution of parabolic equations of	
	second order in two space variable-improved explicit schemes, implicit	
	methods, alternating direction implicit (ADI) methods.	
IV	[Course Outcome (s) No.: 3,4]	16
	Numerical solution of hyperbolic equations of second order in one and two	
	space variables with constant and variable coefficients-explicit and implicit	
	methods. ADI methods. Numerical solutions of elliptic equations-	
	approximations of Laplace and biharmonic operators, solutions of Dirichlet,	
	Neumann and mixed type problems with Laplace and Poisson equations in	
	rectangular, circular and triangular regions. ADI methods.	
Suggest	ed Readings:	
1. (Gupta, R. K. Numerical Methods: Fundamentals and Applications. 1st edition, Cambri	dge University
]	Press, 2019.	
2.	Gupta. R. S., <i>Elements of Numerical Analysis</i> , 2 nd Edition, Cambridge University Pres	s, 2015.
	Atkinson, K. and Han, W. <i>Theoretical Numerical Analysis</i> , Springer Science & Busine 2010.	ess Media,
4.]	Bradie, B. A friendly introduction to Numerical Analysis. Pearson Education, 2007.	
5.]	Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. Nonlinear Programming Theory and Al	gorithms. John
	Wiley and Sons, 2004.	
6.	Smith, G. D. Numerical solution of Partial Differential Equations: Finite Difference M	lethods.3 rd

Course	Course Name:	Finite Elemen	t Methods		Course Code:		
No: 35					SBSMAT (01 04 04 DCE	EC 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu	ation Marks:	Examinatio	on Duration:	3	hours		
	Marks Marks The course aims shape functions	to provide th		concepts of t		-	_
	objective is to a various boundar	-		application of	f finite elemo	ent methods f	for solving
Course Outcomes:	After completing CO1: Understar difference methe CO2: Use the ro linear, quadratic CO3: Formulate	nd the general od ble and signifi , and cubic sh	theory of Fini cance of shape ape functions	te Element me e functions in for interpolati	ethod and its finite elemen	difference wi	

CO4: Apply the weighted residual and variational approaches in solving some boundary value problems

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No.: 1,2]	15
	General theory of finite element methods, difference between finite element	
	and finite difference methods, review of some integral formulae, concept of	
	discretization, different coordinates, one dimensional finite elements, concept	
	of shape functions, stiffness matrix, connectivity, boundary conditions, and	
	equilibrium equation.	
II	[Course Outcome (s) No. : 2, 3]	15
	Numerical integration, construction of shape functions: linear elements (one	
	dimensional bar element, two dimensional-triangular and rectangular elements,	
	three dimensional tetrahedron element).	
III	[Course Outcome (s) No. : 2, 3]	14
	Higher order elements: one dimensional quadratic element, two dimensional	
	triangular element, rectangular element, three dimensional tetrahedron	
	element: quadratic element and higher order elements	

IV	[Course Outcome (s) No.: 4]	16
	Weighted residual and variational approaches (Galerkin method, collocation	
	method, Rayleigh Ritz method etc.), solving one-dimensional problems.	
	Application of finite element methods for solving various boundary value	
	problems, computer procedures for finite element analysis	
Suggeste	d Readings:	
1.	Rao, S. S. The Finite Element Method in Engineering. 5th edition, Butterworth	n-Heinemann,
	2017.	
2.	Hughes, T. J. R. The Finite Element Method (Linear Static and Dynamic F	inite Element
	Analysis). Courier Corporation, 2007.	
3.	Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method: The Basis.	Butterworth-
	Heinemann, 2000.	
4.	Smith, G. D. Numerical solution of Partial Differential Equations: Finite differential	ence methods.
	Oxford Applied Mathematics and Computing Science Series, 1985.	

Course	Course Name:	Advanced Co	mplex Analysi	S	Course Co	ode:		
No: 36					SBSMAT 01 04 05 DCEC 3104			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 4	
			3	1	0	4	Total Hours: 60	
Total Evalu	ation Marks:	Examinatio	on Duration:		3 hours			
100								
TEE: 70 Course	Marks The primary ol		te of course:	Nil	the notion of	flogarithmi	cally convey	
Objective	function and its	•				•	•	
Objective	and meromorph function theory	ic functions,	Runge's theore	em and topi	ics related wi	th it, introdu	ce harmonic	
	Picard and relate	-	remet s proble	in, theory o		entire runetic	in reading to	
Course	After completin	g this course,	student is expe	ected to lear	n the followin	ng:		
Outcomes:	CO1 • Underst	and the basics	of logarithmic	ally convex	function that	helps in exte	ending	
	maximum modu	and the basics of logarithmically convex function that helps in extending ulus theorem.						
	CO2: Be famili	ar with metric	on spaces of a	analytic, me	romorphic an	d analytic fu	nctions,	
	equi-continuity	and normal fa	milies leading	to Arzela-A	Ascoli and rela	ated theorem	s.	
	CO3: Appreciat	te the richness	of simply con	nected regio	on which con	nects various	fields	

topology, analysis and algebra.

CO4: Know how big the range of an entire function is as well as Picard and related theorems.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
I	[Course Outcome (s) No.:1]Maximum modulus principle, Schwarz's lemma, convex functions andHadamard's three circles theorem, Phragmen-Lindelof theorem.	15
Π	[Course Outcome (s) No. : 2] The space of continuous functions, spaces of analytic functions, The Riemann mapping theorem, Weierstrass factorization theorem. Gamma function, Reimann zeta function.	15
Ш	[Course Outcome (s) No. : 3] Analytic continuation, Runge's theorem, simple connectedness, Mittag-Leffier's theorem, Schwarz reflection principle, analytic continuation.	15

IV	[Course Outcome (s) No. : 4]	15
	Basic properties of harmonic functions, harmonic functions on a disk, Jensen's	
	formula, Bloch's theorem, The Little Picard theorem, Schottky's theorem, The	
	Great Picard theorem.	

Suggested Readings:

- 1. Ahlfors, L.V. Complex Analysis. 3rd edition, McGraw-Hill, 2017.
- 2. Alpay, D. A Complex Analysis Problem Book. Birkhäuser, 2016.
- 3. Churchill, R. V. and Brown, J. W. *Complex Variables and Applications*. 9th edition, McGraw Hill Education, 2014.
- 4. Edward, S. B. and Snider, Arthur D. Fundamental of Complex Analysis with Applications to Engineering and Sciences. Pearson Education, 2014.
- 5. Lang, S. Complex Variable. Springer, 2013.
- 6. Conway J. B. Functions of One Complex Variable. Springer, 2000.

Course	Course Name:	Introduction to C	Cryptography	7	Course Co	ode:		
No: 37					SBSMAT 01 04 06 DCEC 3104			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L	T	Р	Credits	Contact Hrs per Week: 4	
			3	1	0	4	Total Hours: 60	
Total Evalu 100	ation Marks:	Examination Duration: 3 hours						
	Marks Marks	Pre-requisite of course: Nil						
Course		the course is to	give a simp	le account of	cryptograp	hy Upon con	unletion of	
Objective		dents will have					_	
- ~ j		mentary congru	-	-				
		ore variables. T		U		•	1	
	and explored to	cryptography.	We will also	discussion	on Diffie-H	ellman RSA	public key	
	cryptosystem.							
Course	After completin	g this course, stu	ident is expe	cted to learn	the followin	g:		
Outcomes:	CO1: Understatequations.	and the operation	ons with co	ongruence's,	linear and	non-linear c	congruence	
	CO2: Use the b	asics of RSA se	curity and be	able to breal	k the simple	est instances a	nd analyze	

the basic concepts of remote coin flipping, elliptic curve based cryptography.

CO3: Apply the theorems: Fermat's last theorem, prime number theorem and zeta function.

CO4: Understand and use the numbers: Perfect numbers, Fermat numbers, Mersenne primes and amicable numbers, Fibonacci numbers.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Modular arithmetic, congruence, primitive roots, cryptography introduction,	
	Caesar Cipher, Diffie-Hellman RSA public key cryptosystem, Knapsack	
	cryptosystem, application of primitive roots to cryptography.	
II	[Course Outcome (s) No. : 2]	15
	Applications of cryptography in primality testing and factorization of large	
	composite numbers, remote coin flipping. Elliptic curve based cryptography.	

III	[Course Outcome (s) No. : 3]	15
	Perfect numbers, Fermat numbers, Mersenne primes and amicable numbers,	
	Fibonacci numbers, representation of integers as sum of Squares.	
IV	[Course Outcome (s) No. : 4]	15
	Linear and non-linear Diophantine equations, Fermat's last theorem, prime number theorem and zeta function.	
Suggested I	Readings:	
1. Tilb	org, H. C. A. Fundamentals of Cryptology. Springer, 2013.	
2. Buc	hmann, J. A. Introduction to Cryptology.Springer Science & Business Media, 2012	
3. Bur	ton, D. M. Elementary Number Theory, Tata McGraw Hill Publishing House, 2006.	
4. Mer	nezes, A. J., V., Oorschot, P. C. and Vanstone, S. A. Handbook of Applied Cryptograp	ohy. CRC
Pres	ss, 1996.	
5. Kob	blitz, N. A Course in Number Theory and Cryptography. 2 nd edition Springer, 1994.	
6. Sin	nmons, G. J. Contemporary Cryptology, The Science of Information Integrity. New Yo	ork, IEEE
Pres	ss, 1992	

Course	Course Name: A	Advanced Ab	stract Algebra		Course Co	de:			
No: 38					SBSMAT (01 04 07 DC	EC 3104		
Batch:	Programme:	Semester:	L	Т	Р	Credits	Contact		
							Hrs per		
2021 2022	M.Sc.	13.7					Week:		
2021-2023	Mathematics	IV					4		
			3	1	0	4	Total		
			5	1	0	-	Hours:		
							60		
Total Evalu	ation Marks:	Examination Duration: 3 hours							
100									
CIE: 30	Marks	Pre-requisite of course: Nil							
	Marks								
Course	The main objecti			-			_		
Objective		leas of modules like cyclic modules, simple, semi-simple modules uniform							
	modules, primary		•						
Course	After completing	this course,	student is expe	ected to lea	rn the follown	ng:			
Outcomes:	CO1: Explain th	e fundament	al concepts of	f modules a	and their role	in modern n	nathematics		
	and applied conte	exts.							
	CO2: Demonstrate accurate and efficient use of finitely generated Abelian groups.								
	CO3: Apply the	e theorems: f	fundamental s	tructure the	eorem of fini	tely generate	ed modules		
	over principal					• •			
	Wedderburn - Ar								

CO4: Solve the problem using Nilradical and Jacobson radicals, operations on ideals,
extension and contractions applied to diverse situations in physics, engineering and other
mathematical contexts.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Cyclic modules, simple and semi-simple modules, Schur's lemma, free	
	modules, fundamental structure theorem of finitely generated modules over	
	principal ideal domain and its applications to finitely generated Abelian groups.	
II	[Course Outcome (s) No. : 2]	15
	Uniform modules, primary modules and Noether- Lasker theorem, Noetherian	
	and Artinian modules and rings with simple properties and examples.	
III	[Course Outcome (s) No. : 3]	15
	Nilpotent ideals in Noetherian and Artinian rings, Hilbert basis theorem,	
	Nakayama's lemma, Nilradical and Jacobson radicals, operations on ideals,	
	extension and contraction.	

IV	[Course Outcome (s) No. : 4]	15						
	Hom(R,R), opposite rings, Wedderburn -Artin theorem, Maschk's theorem,							
	equivalent statement for left Artinian rings having non-zero nilpotent ideals.							
Sugge	sted Readings:							
1.	Rotman, J. J.Advanced Modern Algebra. 3rd edition. American Mathematical Soc., 2015	j.						
2.	Atiyah, M. F. and Macdonald, I. G. Introduction to Commutative Rings. Sarat Book Hou	se, 2007.						
3.	Curtis, C. W. and Reiner, I. Representation Theory of finite Groups and Associative Alg	ebras.						
	American Mathematical Society, 2006.							
4.	Lam, T. Y. Lectures on Modules and Rings. GTM Vol. 189, Springer-Verlag, 1999.							
5.	Bhattacharya, P. B., Jain, S. K. and Nagpaul, S. R. Basic Abstract Algebra. 2nd edition,	Cambridg						
	University Press, Indian edition, 1997.							
6.	Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules. Springer-Verlag	New York						
	1992.							
7.	Cohn, P. M. Algebra, Vols. I, II & III, John Wiley & Sons, (Vol. I-1982, Vol. II- 198	89, Vol-III						
	1991.							

Course	Course Name: Measure theory and IntegrationCourse Code:							
No: 39					SBSMAT 01 04 08 DCEC 3104			
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L 3	T	P 0	Credits	Contact Hrs per Week: 4 Total Hours: 60	
Total Evalua	tion Marks: 100	Examinatio	Examination Duration: 3 hours					
CIE: 30 Marks		Pre-requisite of course: Nil						
TEE: 70 N Course	Aarks Measure theory p	provides a foundation for many branches of mathematics such as harmonic						
Objective	analysis, ergodic a central, extren generalizations of	theory, theory nely useful	of partial di part of mo	fferential eo dern analy	quations and sis, and m	l probability t	heory. It is	
Course	After completing	this course, st	udent is expe	ected to lear	n the follow	ring:		
Outcomes:		oncepts of measurable set and measurable function						
	CO2: State and ex	xplain the con	struction of t	he Lebesgu	e integral ar	nd use it		
	CO3: Apply the theorems of monotone and dominated convergence and Fatou's lemma							
	CO4: Describe th	e construction	of product 1	neasure and	l to apply Fi	ıbini's theore	m	
		COU	RSE SYLL	ABUS				

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
I	[Course Outcome (s) No. : 1]	15
	Length of an open set, concept of measure, Lebesgue outer measure and	
	measurable sets, example of non-measurable set, Sigma algebra, Borel sets, G_{δ}	
	and F_{σ} –sets, Outer and inner regularity of Lebesgue measure.	
Π	[Course Outcome (s) No. : 2]	15
	Set function, abstract measure spaces, properties of measures, some examples	
	of measures, measurable spaces, measurable functions, combinations of	
	measurable functions, and limits of measurable functions.	
III	[Course Outcome (s) No. : 3]	15
	Review of Riemann integral, integrable simple functions, the Lebesgue	
	integration of a measurable function, integration with respect to a measure.	

IV	[Course Outcome (s) No. : 4]	15
	Almost everywhere convergence, convergence in measure, Fatou's Lemma,	
	monotone and dominated convergence theorems.	
Suggested Re	eadings:	
1. Berbe	rian, S. K. Measure and Integration. AMS Chelsea Publications, 2011.	
2. Royde	en, H. L. and Fitzpatrick P. M. Real Analysis. 4th edition, Pearson India, 2010.	
2 D	$C \rightarrow M$ $T \rightarrow L + C$ Norm A so Intermediated (D) L + 1, 2000	

- 3. Barra, G. de. *Measure Theory and Integration*. New Age International (P) Ltd., 2009.
- 4. Rana, I. K. An Introduction to Measure and Integration.2nd edition, Narosa Publishing House, 2004.
- 5. Folland, G. B. Real Analysis. John Wiley & Sons, Inc., New York, 1999.
- 6. Hewitt, E. and Stromberg, K. Real and Abstract Analysis. Springer-Verlag, New York, 1975.

Course	Course Name:	Mechanics			Course	Code:	
No: 40					SBSMA	AT 01 04 09 I	DCEC 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L	Т	Р	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours:60
Total Evalu	ation Marks:	Examinatio	n Duration:	3	hours		
TEE: 70	Marks		te of course: N				
Course	This course ain	ns to impart kr	nowledge in me	chanics use	d for the de	erivation of in	mportant
Objective	results and prob mechanical app		•	c c	-		s a
Course	After completin	ng this course,	student is expe	ected to lear	n the follow	wing:	
Outcomes:		CO1: Understand the notion of moment and product of inertia.					
	CO2: Recognize the dynamics involved in projectile motion, pendulum motion, simple harmonic motion and related problems.						, simple
		CO3: Use the Lagrangian and Hamiltonian functions to formulate the equation of motion for mechanical systems.					
	CO4: Evaluate	canonical equ	ations by mean	ns of genera	ting function	ons and event	ually

develop Hamilton-Jacobi method to solve equations of motion.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of Each
		Unit
I	[Course Outcome (s) No. : 1] Moments and products of inertia, theorems of parallel and perpendicular axes, principal axes, the momental ellipsoid, equimomental systems, coplanar distributions.	15
Π	[Course Outcome (s) No.:2]Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations, generalized coordinates, holonomic and non-holonomic systems. scleronomic and rheonomic systems, Lagrange's equations for a holonomic system, Lagrange's equations for a conservative and impulsive forces, kinetic energy	15

	as quadratic function of velocities.	
III	[Course Outcome (s) No. : 3] Generalized potential, energy equation for conservative fields, Hamilton's variables. Donkin's theorem. Hamilton canonical equations, cyclic coordinates, Routh's equations. Poisson's bracket. Poisson's identity, Jacobi-Poisson	15
IV	theorem. Hamilton's principle, principle of least action.[Course Outcome (s) No. : 4]Poincare Cartan integral invariant. Whittaker's equations. Jacobi's equations.Statement of Lee Hwa Chung's theorem. Hamilton-Jacobi equation. Jacobitheorem. Method of separation of variables. Lagrange brackets, condition ofcanonical character of a transformation in terms of Lagrange brackets andPoisson brackets, invariance of Lagrange brackets and Poisson brackets, undercanonical transformations.	15
	 <i>ed Readings:</i> Spiegel, M.R. Theory & Problems of Theoretical Mechanics, Schaum Outline Series McGrawHill, 2017. Rana, N. C. and Joag, P. C. <i>Classical Mechanics</i>. McGraw Hill, 2013. Rao,S. K.<i>Classical Mechanics</i>. PHI Learning Pvt. Ltd., 2005. Chorlton, F. <i>Textbook of Dynamics</i>. CBS Publishers & Dist. Pvt. Ltd., 2004. 	
	 Louis N. H. and Janet D. F. <i>Analytical Mechanics</i>. Cambridge University Press, 1995 Gantmacher, F. <i>Lectures in Analytical Mechanics</i>. Mir Publishers, Moscow, 1975. 	8.

Course	Course Name:	Number Theor	ry		Course Code:			
No: 41					SBSMAT	01 04 10 D 0	CEC 3104	
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L 3	T	P 0	Credits 4	Contact Hrs per Week: 4 Total	
Total Evalu 100	ation Marks:	Examinatio	n Duration	n:	3 hours		Hours: 60	
	Marks Marks	Pre-requisit	te of cours	e: Nil				
Course	The purpose of	the course is	to give a s	simple accou	unt of classi	cal number t	theory, prepare	
Objective	students to gra applications of r fundamental de congruence's, s variables, and b	number theory finitions and t olve congruer	In this countries in this countries of the second s	urse, student f elementary ons and system	x will have a y number th tems of equ	a working kn eory, be able ations with	owledge of the e to work with	
Course Outcomes:							quations	
	CO2: Use the CO3: Apply the	-	-			•	-	

theorem, Wilson's theorem

CO4: Analyse arithmetic functions in areas of mathematics

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1]	15
	Representation of the real numbers by decimals, divisibility, G.C.D and	
	L.C.M., primes, Fermat numbers, congruences and residues, theorems of	
	Euler, Fermat and Wilson, solutions of congruences, linear congruences,	
	Chinese remainder theorem.	
II	[Course Outcome (s) No. : 2]	15
	Arithmetical functions $\varphi(n)$, $\mu(n)$ and $d(n)$ and $\sigma(n)$, Mobius inversion	
	formula, congruences of higher degree, congruences of prime power modulli	
	and prime modulus, power residue.	

III	[Course Outcome (s) No. : 3]	15				
	Quadratic residue, Legendre symbols, lemma of Gauss and reciprocity law.					
l	Jacobi symbols, irrational numbers, irrationality of e and π . Finite continued					
	fractions, simple continued fractions, infinite simple continued fractions.					
IV	[Course Outcome (s) No. : 4]	15				
	Periodic continued fractions, approximation of irrational numbers by					
	convergent, best possible approximation, Farey series, rational					
	approximation, Pell's equations, Hurwitz theorem, Lagrange four square					
	theorem.					
Suggested	Readings:					
1. Ap	ostol, T. M. Introduction to Analytic Number Theory. Springer 2014.					
2. Niv	ven, I. and Zuckerman, H. S. Introduction to the Theory of Numbers. John Wiley &	z Sons, 2008.				
3. Burton, D. M. Elementary Number Theory. Tata McGraw Hill Publishing House, 2006.						
4. Hai						
5. Dav	venport, H. Higher Arithmetic. Cambridge University Press, 1999.					
•						

Course	Course Name:	Mathematics fo	or Finance	e and	Course Co	de:	
No: 42	Insurance				SBSMAT	01 04 11 DCE	C 3104
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	P	Credits	Contact Hrs per Week: 4
			3	1	0	4	Total Hours: 60
Total Evalu	ation Marks:	Examination	n Duratio	on:	3 hours	;	-
	Marks Marks	Pre-requisit	e of cour	se: Nil			
Course	This course intr	oduces the bas	sic conce	pts of Fir	nancial Mana	igement such	as Insurance
Objective	and Measureme	nt of returns un	der uncer	rtainty situ	uations. The j	philosophy of	this course is
	that Time value	of Money - Int	erest rate	and disco	ount rate play	a fundamenta	l role in Life
	Insurance Mathe	ematics – Const	truction of	of Moralit	y Tables.		
Course	After completin	g this course, st	udent is	expected t	to learn the fo	ollowing:	
Outcomes:	 mes: CO1: Demonstrate knowledge of the terminology related to nature, scope, goals, risks and decisions of financial management. CO2: Predict various types of returns and risks in investments and take necessary protective measures for minimizing the risk. 						oals, risks
							ssary
	CO3: Develop a	ability to unders	stand, and	alyze and	solve probler	ns in bonds, fi	nance and

insurance.

CO4: Build skills for computation of premium of life insurance and claims for general insurance using probability distributions.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1]	15
	Financial Management –overview. Nature and scope of financial management.	
	Goals and main decisions of financial management. Difference between risk,	
	Speculation and gambling. Time value of Money - Interest rate and discount	
	rate. Present value and future value discrete case as well as continuous	
	compounding case. Annuities and its kinds.	
II	[Course Outcome (s) No. : 2]	15
	Meaning of return. Return as Internal Rate of Return (IRR). Numerical	
	methods like Newton Raphson method to calculate IRR. Measurement of	
	returns under uncertainty situations. Meaning of risk. Difference between risk	

	and uncertainty. Types of risks. Measurements of risk. Calculation of security	
	and Portfolio Risk and Return-Markowitz Model. Sharpe Single Index Model-	
	Systematic Risk and Unsystematic Risk.	
III	[Course Outcome (s) No. : 3]	15
	Taylor series and Bond Valuation. Calculation of Duration and Convexity of	
	bonds. Insurance Fundamentals – Insurance defined. Meaning of loss.	
	Chances of loss, Peril, Hazard, proximate cause in insurance. Costs and	
	benefits of insurance to the society and branches of insurance-life insurance	
	and various types of general insurance. Insurable loss exposures- feature of a	
	loss that is ideal for insurance.	
IV	[Course Outcome (s) No. : 4]	15
	Life Insurance Mathematics – Construction of Morality Tables. Computation	
	of Premium of Life Insurance for a fixed duration and for the whole life.	
	Determination of claims for General Insurance – Using Poisson Distribution	
	and Negative Binomial Distribution -the Polya Case. Determination of the	
	amount of Claims of General Insurance - Compound Aggregate claim model	
	and its properties, Claims of reinsurance. Calculation of a compound claim	
	density function F, Recursive and approximate formulae for F.	

Suggested Readings:

- 1. Ross, S. M. An Introduction to Mathematical Finance. Cambridge University Press, 2019.
- Elliott, R. J. and Kopp, P. E. *Mathematics of Financial Markets*. Sprigner Verlag, New York Inc, 2018.
- 3. Damodaran, A. Corporate Finance Theory and Practice. John Wiley & Sons, Inc, 2012.
- 4. Hull, J. C. Options, Futures, and Other Derivatives. Prentice-Hall of India Private Ltd, 2010.
- Daykin, C. D., Pentikainen, T. and Pesonen, M. *Practical Risk Theory for Actuaries*. Chapman & Hall, 2008.
- 6. Dorfman, M. S. *Introduction to Risk Management and Insurance*. Prentice Hall, Englwood Cliffs, New Jersey, 1999.
- Neftci, S. N. An Introduction to the Mathematics of Financial Derivatives. Academic Press, Inc, 1991.

Course	Course Name:	Programming	g in MATLAB		Course C	Code:	
No: 43					SBSMAT	C 01 04 01 S	EEC 0120
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 3
			0	1	2	0	Total Hours: 45
Total Evalu 100	ation Marks:	Examinatio	on Duration:	3 hou	ırs		
	Marks Marks	Pre-requisi	te of course: Nil				
Course		ective is to fa	amiliarize the stu	dents with pr	oblem solv	ing through	MATLAB.
Objective	The course objective is to familiarize the students with problem solving through MATLAB. The course aims to give exposure to basic concepts of the MATLAB programming. The course aims to design the MATLAB programs for various numerical methods.						
Course	After completin	ng this course,	student is expect	ed to learn the	e following	:	
Outcomes:	atcomes: CO1: Overview and display format of MATLAB programs CO2: Acquire knowledge of various elementary built-in functions, data types and Matrix operations						Matrix
	CO3: Learn ab	out control flo	ow and loop struc	tures			
	CO4: Write MATLAB programs for various numerical methods use to solve nonlinear equations, system of linear equations, interpolation, numerical differentiation and integrations,						

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours of
		Each Unit
Ι	[Course Outcome (s) No. : 1, 2]	18
	Overview of MATLAB, operators, display format, elementary built-in functions,	
	working with variables, general commands, data types, data import, arrays,	
	operations with arrays.	
II	[Course Outcome (s) No. : 2, 3]	20
	Matrices: eigenvalues and eigenvectors, similarity transformation and	
	diagonalization, functions, script files, operators, loops and conditional	
	statements, programming in MATLAB, graphics- 2-D and 3-D plots, input and	
	output.	
III	[Course Outcome (s) No. : 2, 3, 4]	18
	Applications in numerical methods: bisection method, false position (Regula-	
	Falsi) method, Newton-Raphson) method	
	System of linear equations, LU decomposition, Gauss elimination method, Gauss	
	Seidel method, Gauss Jordan method, interpolation, Lagrange and Newton	

	polynomials.	
IV	[Course Outcome (s) No. : 3, 4]	19
	Applications to numerical differentiation and integrations: Trapezoidal method	
	and Simpson method, Runge-Kutta method, introduction to working with	
	modules in MATLAB.	
Suggested	Readings:	
1.	Kumar, S. S. and Lenina, S. V. B. Matlab: Easy Way of Learning. PHI Learning Pvt.	Ltd., 2016.
2.	Pratap, R. Getting Started with MATLAB: A Quick Introduction for Scientists and En	gineers.
	Oxford University Press, 2016.	
3.	Chapman, S. J. Matlab Programming for Engineers, 5 th edition, Cengage Learning, 20	015.
4.	Otto, S.R. and Denier, J.P. An Introduction to Programming and Numerical Methods	in MATLAB.
	Springer-Verlag, 2005.	
5.	Yang, W. Y., Cao, W., Chung, T. and Morris, J. Applied Numerical Methods using M	IATLAB.
	John Wiley Interscience, 2005.	
6.	Getting Started with MATLAB, Maths Works Inc. www. in.mathsworks.com.	

Course	Course Name:	Automata Theo	ry		Course Co	de:		
No: 44					SBSMAT 0	1 04 02 SEEC	C 0120	
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester: IV	L	T	Р	Credits	Contact Hrs per Week: 3	
			0	1	2	0	Total Hours: 45	
Total Evalu 100	ation Marks:	Examination	Duratio	n:	3 hours			
CIE: 30	Marks	Pre-requisite of course: Nil						
TEE: 70	Marks							
Course	This course intro	duces the basic concepts of Computability Theory such as Moore and						
Objective	Mealy machines working knowle Languages, regu	edge of the cent	al ideas o	f finite state	machines, red		•	
Course	After completin	g this course, st	udent is e	xpected to lo	earn the follow	ing:		
Outcomes:	clear understand	number of proof techniques to theorems in language design and develop a ling of decidability and undecidability. Ind the concepts of deterministic and non-deterministic finite state automata lence.						
	CO3: Demonstr	rate the equivale	ence betw	een context-	free grammars	and pushdow	n	

automata.

CO4: Appreciate the power of the Turing machine, as an abstract automaton, that describes computation, effectively and efficiently.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit	Hours
		of Each
		Unit
Ι	[Course Outcome (s) No. : 1]	12
	Introductory Computability Theory - Finite state machines and their transition	
	table diagrams, equivalence of finite state machines, reduced machines,	
	homomorphism and finite automata acceptors.	
II	[Course Outcome (s) No. : 2]	11
	Non-deterministic finite automata and equivalence of its power to that of	
	deterministic finite automata, Moore and Mealy machines.	
III	[Course Outcome (s) No. : 3]	12
	Regular Languages, Regular Expressions, Properties and uses of Regular	

		expressions, Finite automata and Regular Expressions.	
IV		[Course Outcome (s) No. : 4]	10
		Context free Grammars and Context free Languages, Simplification of Context	
		free Grammar, Pumping Lemma, Kleene's Theorems	
Sugges	sted Re	adings:	I
	1.	Gersting, J. L. Mathematical Structures for Computer Science. 7th edition,	Computer
		Science Press, New York, 2020.	
	2.	Liu, C.L. Elements of Discrete Mathematics. McGraw-Hill Book Co. 2019.	
	3.	Nasir S.F.B. and Srimani P. K.A Textbook on Automata Theory. Cambridge	University
		Press India Pvt. Ltd., 2018.	
	4.	Ram, B. Discrete Mathematics. Vinayak Publishers and Distributors, Delhi, 2010	
	5.	Lipschutz, S. and Schiller, J. Finite Mathematics. McGraw Hill, 1994.	
	6.	Tremblay, J. P. and Manohar, R. Discrete Mathematical Structures with Appl Computer Science. McGraw-Hill Book Co., 1997.	ications to

Course	Course Name: Artificial Intelligence			Machine	Course Co	de:		
No: 45	Learning				SBSMAT (01 04 03 SEEC	C 0120	
Batch: 2021-2023	Programme: M.Sc. Mathematics	Semester:	L	T	Р	Credits	Contact Hrs per Week: 3	
				1	2	0	Total Hours: 45	
Total Evalua	ation Marks:	Examination	Duration	1:	3 hours			
	Marks Marks	Pre-requisite	Pre-requisite of course: Nil					
Course	Theories and me	thods for automating and representing knowledge with an emphasis on						
Objectivelearning from input/output data. The course covers a wide variety of approaches, Supervised Learning, Neural Nets and Deep Learning, Reinforcement Learning, H Systems, Bayesian Learning, Fuzzy Rules, and Genetic Algorithms. Each student two of these approaches and creates a term project.					nt Learning, E	Expert		
Course	After completin	g this course, student is expected to learn the following:						
Outcomes:	CO1: Understar	nd the concept of	of Artificia	l Intelligenc	e.			
	CO2: Familiarize with Knowledge based AI systems and approaches							
CO3: Apply the aspect of Probabilistic approach to AI and Identify the Neural Network and NLP in designing AI models.						etworks		

CO4: Recognize the concepts of Machine Learning and its deterministic tools.

COURSE SYLLABUS

NOTE:

Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

OR

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

Unit No.	Content of Each Unit			
		Unit		
Ι	[Course Outcome (s) No. : 1] History of artificial intelligence, The birth of artificial intelligence, AI Winters, Todays' AI, Historical milestones in the development of AI, Great contributors, People who have influenced AI, Differences between strong AI and weak AI,	12		
Π	 Artificial Intelligence definitions, Emergence of AI – Technological advances. [Course Outcome (s) No. : 2] Machine Learning> Deep Learning>AI, Functions of AI, Characteristics of artificial intelligence, Applications of AI, AI in health care, Industry 4.0, AI in manufacturing, AI in education sector, AI in business, AI in Finance Sector, AI in Law, AI in society, Cognitive science and AI, Cognition and process of 	11		
		d process of		

	Linguistics, Artificial intelligence as Cognitive science, Methods in Cognitive				
	science, Watson.				
III	[Course Outcome (s) No. : 3]	12			
111	Introduction to knowledge representation systems, Knowledge representation				
	using logic, Propositional logic, Semantics of propositional logic, Properties of				
	propositional logic statements, Tautologies and logical implication, Resolution,				
	Conjunctive normal form, Resolution is valid, Resolution algorithm,				
	Knowledgebase systems, Structure of a knowledge based system, Recap of				
	artificial intelligence.				
IV	[Course Outcome (s) No. : 4]	10			
	Components of expert systems, Expert systems development, Wumpus world,				
	Logic, A simple knowledge base, Exploring the Wumpus world, Semantic net,				
	Inference in semantic networks, Semantic networks: Types and components,				
	Types of relationships in semantic network, Frames, Frames: Some examples,				
	Non-monotonic logic, Circumscription, Default logic, Artificial Neural Network,				
	Natural language processing, Classical NLP, Feed-forward networks, Recurrent				
	neural networks and recursive networks, Features for NLP problems, Framenet				
	Vs. Wordnet, Features for text, Features for word relations, NGRAM features,				
	Some terminologies.				
Suggested	Readings:				
	 Gersting, J. L. Mathematical Structures for Computer Science. 7th edition, Science Press, New York, 2020. 	Computer			
	2. Markiewicz, M. and Zheng, J. <i>Getting Started with Artificial Intelligence: A Guide to Building Enterprise.</i> Ist edition, Shroff/O'Reilly, 2019.	Practical			
	3. Theobald, O. Machine Learning: Make Your Own Recommender System. Scattery 2018.	plot Press,			
	4. Flasinski, M. Introduction to Artificial Intelligence. Springer, 2017.				

9. TEACHING-LEARNING PROCESS

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

10. IMPLEMENTATION OF BLENDED LEARNING

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- Student-Centric Pedagogical Approach focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each programme, be adopted

11. ASSESSMENT AND EVALUATION

- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments
- 1. Examination and Internal Assessment: The internal assessment work and the End-Semester examination shall have the weightage of 30% and 70%, respectively.

2. Internal Assessment:

- (i) Internal Assessment shall be done on a continuous basis, taking into account the student's class performance, completion of assignments and performance at the two compulsory sessional tests to be conducted in a semester. For the sake of uniformity, particularly for interdepartmental transfer of credits, there shall be a uniform procedure of examination to be adopted by all faculty members.
- (ii) Internal Assessment Test 1 shall be held around the sixth week of the semester for the syllabi covered till then.
- (iii) Internal Assessment Test 2 shall be held around the twelfth week for the syllabi covered between seventh and twelfth week.
- (iv) For conducting Internal Assessment, one or more assessment tools, such as written tests, assignments, oral quizzes, paper presentation, laboratory work, etc., suitable to the course may be employed.
- The Internal Assessment for theory shall consist of the following components with marks indicated against each:-
 - (a) Attendance 5 marks

	Below 75 %	Nil
	75% to < 80 %	1 mark
	80% to < 85 %	2 marks
	85% to < 90%	3 marks
	90% to < 95%	4 marks
	95% to 100%	5 marks
(b)	Assignments/Presentations and	5 marks
	Class Participation	
(c)	Internal Assessment Test-1	10 marks
(d)	Internal Assessment Test-2	10 marks

This criteria shall be made known to the students at the commencement of each semester. For practical examination, 70 percent of the marks will be awarded through an end semester practical exam and remaining 30 percent of the marks will consist of internal assessment to be awarded by concerned faculty member(s) of the concerned department. Maximum 05 marks to be awarded for attendance of students (Same as mentioned in case of internal assessment for theory examination).

Assessment of Seminar paper: The seminar paper shall be assessed on the basis of the contents of the paper submitted and its presentation, equally. The assessment will be made by the concerned teacher/advisor/supervisor. A Seminar presentation paper will not exceed 4 credits per semester.

- (vi) The Head/Incharge of the Department may allow a student to repeat one sessional test, if his/her application in this regard is considered as genuine on valid reasons.
- (vii) A student is required to secure a minimum of 'P' grade in the Internal Assessment and in the End-Semester examinations in the aggregate. However, he/she shall have to pass the practical examination separately, with a minimum of 'P' grade.

3. End-Semester Examination:

- (i) The End-semester Examinations covering the entire syllabus prescribed for the course and carrying 70% of weightage, shall be conducted by the Examination Branch of the University, in consultation with the Head of the Department.
- (ii) The Examiners or Board of Examiners shall be appointed for each course by the Board of Studies of the Department concerned.
- (iii) The distribution of weightage for the valuation of semester-long project work/ dissertation shall be:
 - (a) Periodic presentation : 30%
 - (b) Project Report : 40%
 - (c) Viva voce : 30%
 - Or

as decided by the Board of Studies of the Department concerned.

- (iv) The hall ticket/admit card shall be issued to the student on the recommendation of the Head of the Department, subject to the following conditions:
 - (a) Having fulfilled the requirement of attendance as prescribed, and,
 - (b) Submission of a "No dues" certificate in the prescribed form.

4. Letter Grades and Grade Points:

An absolute grading system shall be adopted to grade the students.

- Under the absolute grading system, marks shall be converted to grades based on pre-determined class intervals.
- (ii) In the End-semester theory or practical examinations, the examiner shall award the marks and these marks shall be further converted into Grades/Grade points by the examination branch in accordance with the provisions of the Ordinance.
- (iii) Detail Marks Sheet issued at the end of the semester or the programme shall carry marks/percentage and equivalent grades both.

Letter Grade	Grade Point	Range of Grade Point	Class Interval (in %)
	(SGPA/CGPA)	(SGPA/CGPA)	
O (Outstanding)	10	Above 9 to 10	Above 90 and < 100
A+ (Excellent)	9	Above 8 to 9	Above 80 and < 90
A (Very Good)	8	Above 7 to 8	Above 70 and < 80
B+ (Good)	7	Above 6 to 7	Above 60 and < 70
B (Above Average)	6	Above 5 to 6	Above 50 and < 60
C (Average)	5	Above 4.5 to 5	Above 45 and < 50
P (Pass)	4	4 to 4.5	40 to 45
F (Fail)	0		< 40
Ab (Absent)	0		Absent

(iv) The University shall adopt the 10-point Grading System, with the Letter Grades as given under:

Note:

- (i) F= Fail, and the students graded with 'F' in a programme or course shall be required to re-appear in the examination. However, students appearing in their final Semester Examination, may be permitted to appear in the reappear papers of the preceding odd Semesters.
- (ii) The minimum qualifying marks for a course or programme shall be 40% (i.e., 'P' grade).
- (iii)The students shall have to qualify at the Internal Assessment and the End-Semester examinations in the aggregate, and in the practical examinations, separately.
- (iv) There shall be no rounding off of SGPA/CGPA.

- (v) The SGPA/CGPA obtained by a student shall be out of a maximum of 10 points.
- (vi)In order to be eligible for the award of the Master's degree of the University, a student must obtain CGPA of 4 at the end of the programme.
- (vii) Provided that the student who is otherwise eligible for the award of the degree/diploma but has secured a CGPA of less than 4 at the end of the permissible period of semesters may be allowed by the Department concerned to repeat the same course(s) or other courses of the same type in lieu thereof in the extra semesters provided in Clause 7 on "Duration of Programme".
- (viii) The Cumulative Grade Point Average (CGPA) obtained by a student shall be classified into the following division/Class:

Class/ Division
Outstanding
First Class (With Distinction)
First Class
High-Second Class
Second Class

5. Setting of question papers and Evaluation

(i) The question papers for the End-Semester theory examination shall be set and evaluation of answer books shall be done by the examiners (Internal and/or External ordinarily in the ratio of 60:40) out of the Panel of Examiners recommended by the Board of Studies of the Department concerned on the basis of their expertise/ specialization.

In case of unavailability of external examiners, the Vice Chancellor may allow the evaluation to be performed by the internal examiners only so that the declaration of results is not delayed. The question papers shall be moderated by a Board of Moderators

to be appointed by the Controller of Examinations out of the panel drawn by Head/Incharge of the concerned department.

- (ii) In the case of the practical examination of the courses, the assessment shall be jointly under taken by the internal and external examiners. For the assessment of practical component, half of the examiners in the team shall be invited from outside the University from amongst the panel of examiners (ordinarily not below the rank of Associate Professor) approved by the competent authority.
- (iii) In case of the Project reports, Thesis and Dissertation, the assessment shall be jointly carried out by the internal and external examiners. External examiners shall be invited from amongst the panel of examiners (ordinarily not below the rank of Associate Professor) approved by the competent authority.
- (iv) The result of the students shall be subject to moderation by a Board of Moderators appointed by the University for each programme/course.
- (v) Pattern of Question Papers in End-Semester Exams. for assessment and evaluation of students:
 - (a) Question no. 1 shall consist of short answer type questions of specific word length from all the units with internal choice. The questions shall be set in such a manner that the students shall have to attempt at least one short-answer type question from each unit.
 - (b) Students shall have to attempt one question from each unit and the question paper shall provide internal choice for each question to be attempted from each unit.

6. Re-appear Examination/Improvement of Grades

Re-appear Examination: The students failing to score minimum grade required to qualify a course/programme may be allowed to re-appear in those papers where they couldn't score 'P' grade in the extra semesters provided in Clause 7 on "Duration of Programme" with the following provisions:

(i) student securing "F" Grade in a course shall be permitted to repeat/ reappear in the End-Semester Examination of the Course for a maximum number of three times i.e. a student with arrears on account of "F" Grade, shall be permitted to repeat / reappear in the End Semester Examination for a maximum of three times (including the first appearance), along with the subsequent End Semester Examinations.

- (ii) If a student secures "F" Grade in a Project Work / Project Report/ Dissertation / Field Work Report / Training Report etc, he/she shall be required to resubmit the revised Project Work / Project Report/ Dissertation / Field Work Report / Training Report etc. as required by the evaluator(s). Provided further that a student shall be permitted to resubmit the Project Work / Project Report / Dissertation / Field Work Report/ Training Report etc. for a maximum of three times (including the first submission).
- (iii) Such students may avail the chance to re-appear only within the maximum duration of the programme.
- (iv) Re-appear examination of even semesters shall be conducted with the end-semester examinations of even semesters and similarly examinations of odd semesters shall be conducted with the end-semester examinations of odd semesters. However a student in the final semester is allowed to re-appear in the courses of both odd and even semesters.
- (v) A 'Re-appear' examination shall be based on the syllabi of the course/programme in force at the time of initial registration to the course/programme.
- (vi) A student who has got the migration certificate issued from the university shall not be allowed to re-appear at any examination.

7. Re-evaluation/Re-checking:

A student may apply for revaluation/rechecking of his/her answer scripts within thirty days of the declaration of the result.

- (i) For re-evaluation/re-checking of the answer scripts, a student shall have to apply on the prescribed form available on the University website or the Examination Branch of the University, along with the original Detail Marks Certificate or the copy of the result sheet and a Fee of Rs. 1000/- for each Course/Paper.
- (ii) (a) If after the first revaluation, the difference of the original marks and re-evaluated marks is up to plus or minus 5% of the maximum marks of the paper, there shall be no change in the marks originally scored by the student.

(b) If after the first re-evaluation, the difference of the original marks and re-evaluated marks is more than 5% and less than 10%, the average of the two scores will be considered as final score and the result shall be revised accordingly.

(c) If after the first re-evaluation, the difference comes to more than plus or minus 10% of the maximum marks of the paper, the answer script shall be re-evaluated by a third examiner.

(d) After the second re-evaluation, the average of the nearest two awards/marks shall be taken as final and result shall be revised accordingly.

8. Minimum Credit requirements:

- (i) For a one-year Post Graduate programme, the credit requirements for the award of the Post Graduate Diploma shall be 52 credits (±4 Credits), including a minimum of 9 credits from the elective courses (of which at least 4 credits shall be from elective course offered by another Department).
- (ii) For a two-year Master's Degree programme, the credit requirements for the Master's degree shall be 100 credits (±4 Credits), including a minimum of 18 credits from elective courses (of which at least 8 credits shall be from elective courses offered by other Departments).
- (iii) For a three-year Master's programme, the credit requirements for the Master's degree shall be 150 credits (±6 Credits), including a minimum of 27 credits from elective courses (of which 12 credits shall be from elective courses offered by other Departments).

9. Computation of SGPA and CGPA

The University shall follow the following procedure to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

(i) The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and sum of the number of credits of all the courses undergone by a student, i.e.

SGPA (Si)=
$$\Sigma(Ci \times Gi) / \Sigma Ci$$

where Ci is the number of credits of the i^{th} course and Gi is the grade point scored by the student in the i^{th} course.

(ii) The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a programme, i.e.

$$CGPA = \frac{\sum (Ci \times Si)}{\sum Ci}$$

where Si is the SGPA of the i^{th} semester and Ci is the total no. of credits in that semester.

(iii) The SGPA and CGPA shall be rounded off to 2 decimal points.

10. Illustration of the Computation of SGPA and CGPA

(i) Illustration of Computation

Course	Credit	Grade Letter	Grade Point	Credit Point
Course I	3	А	8	3 x 8 = 24
Course II	4	B+	7	4 x 7 = 28
Course	3	В	6	3 x 6 = 18
III				
Course	3	0	10	3 x 10 =30
IV				

Total credits for		Total Credit points
the semester=13		earned= 100

Thus, SGPA= 100/13= 7.69

(ii) Illustrations for computing CGPA:

Semester I	Semester II	Semester III	Semester IV	Semester V	Semester VI
Credit: 20	Credit: 22	Credit: 25	Credit: 26	Credit: 26	Credit: 25
SGPA: 6.9	SGPA: 7.8	SGPA: 5.6	SGPA: 6.0	SGPA: 6.3	SGPA= 8.0

Thus,

$$CGPA = \frac{((20 \times 6.9) + (22 \times 7.8) + (25 \times 5.6) + (26 \times 6.0) + (26 \times 6.3) + (25 \times 8.0))}{(20 + 22 + 25 + 26 + 26 + 25)}$$

= (969.4/144) = 6.73

Note: Formula to calculate percentage from CGPA/SGPA= CGPA or SGPA x 10; and formula to calculate percentage to CGPA or SGPA = Percentage/10

e.g. In case of example mentioned in table 12.2, the percentage of CGPA = $6.73 \times 10 = 67.30$.

- (iii) Transcript (Format): Based on the above, letter grades, grade points, SGPA, and the CGPA, the Transcripts/Detail Marks Certificates (DMCs) shall be issued to the candidates for each semester and a consolidated transcript indicating the performance in all the semesters. The percentage of marks shall be reflected in the DMC of the final semester on the basis of the CGPA.
- 11. Removal of Student Name from the Programme:

- (i) The name of a student falling under any one of the following categories shall automatically stand removed from the rolls of the University:
 - (a) A student who has failed to fulfil the minimum grade point requirements prescribed for the programme during the maximum duration of the programme.
 - (b) A student who has already exhausted the maximum duration allowed for completion of the Programme and has not fulfilled the requirements for the award of the degree /diploma.
 - (c) A student who is found to be involved in misconduct, forgery, indiscipline or any other objectionable conduct, upon recommendation of the Discipline Committee/ Proctorial Board, and
 - (d) A student who has failed to attend the classes as stipulated under Ordinance XV (II).

(ii) **Promotion Rules**

(a) A student will be promoted from an odd semester to the next even semester without any restrictions on the minimum number of credits earned. However for promotion from an even semester to the next odd semester, a student should have earned atleast 50% of the credits of the current and all previous semesters taken together. A student failing to earn atleast 50% of the credits from the prescribed courses of all present and all previous semesters taken together will be treated as an 'Ex-student' and will be allowed to repeat in the end semester examination of the previous semesters as applicable (for example for a student going from semester 4 to 5 who becomes an Ex. Student, he/ she shall be required to repeat all the papers of semester 3 and semester 4 in the next odd/even semester). However such student will not be allowed to repeat the internal assessment for the said paper/s of the respective semester/s as the case may be. After passing the said semesters, the student shall be promoted to the next odd semester and shall be treated as a 'Regular' student.

(b) A student shall be declared to have passed the programme of study and award of the degree if he/she has secured the required credits with at least 'P' grade.

12. KEYWORDS

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

13. REFERENCES

- National Education Policy-2020.
 https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- The draft subject specific LOCF templates available on UGC website. https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. <u>https://www.ugc.ac.in/pdfnews/6100340_Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf</u>
- Ordinance-XV, Programmes leading to the award of Post Graduate degrees/Diplomas, Central University of Haryana.

14. APPENDICES

NIL